Abstract:
The venturi scrubber has been used as air pollution controlling device. These
scrubbers are promising device for cleaning the contaminated gases. It is found in the
literature that the performance of venturi scrubber (i.e. collection efficiency), is
significantly influenced by droplet distribution, pressure drop, disintegration of liquid,
droplet sizes and injection methods. Effect of submergence height, multi-stage
injection, position of the orifice, diameter of orifice, throat length and angle of
convergence and divergence of venturi scrubber is found scarce and these
parameters are affecting collection efficiency drastically. Therefore, it is necessary to
study their effect to improve the performance of self-priming venturi scrubber. This
article is the review of numerical and experimental study of the performance in
venturi scrubber.
Keywords:
Venturi Scrubber,Self-Priming,CFD Modelling,Collection efficiency,
Refference:
I.A.Rahimi,J.Fathikalajahi,andM.Taheri,“ANewMethodofEddyDiffusivityCalculationforDropletsofaVenturiScrubber,”vol.84,no.February,pp.310–315,2006.
II.A.Moharana,P.Goel,andA.K.Nayak,“N12:Performanceestimationofaventuriscrubberanditsapplicationtoself-primingoperationindecontaminatingaerosolparticulates,”Nucl.Eng.Des.,vol.320,pp.165–182,2017.
III.A.M.Silva,J.C.F.Teixeira,andS.F.C.F.Teixeira,“Experimentsinlargescaleventuriscrubber.PartII.Dropletsize,”Chem.Eng.Process.ProcessIntensif.,vol.48,no.1,pp.424–431,2009.
IV.A.SharifiandA.Mohebbi,“AcombinedCFDmodelingwithpopulationbalanceequationtopredictpressuredropinventuriscrubbers,”2013.
V.A.M.Silva,J.C.F.Teixeira,andS.F.C.F.Teixeira,“Experimentsinalarge-scaleventuriscrubber.PartI:Pressuredrop,”Chem.Eng.Process.ProcessIntensif.,vol.48,no.1,pp.59–67,2009.
VI.A.Majid,Y.Changqi,S.Zhongning,W.Jianjun,andG.Haifeng,“CFDsimulationofdustparticleremovalefficiencyofaventuriscrubberinCFX,”Nucl.Eng.Des.,vol.256,pp.169–177,2013.
VII.A.Majid,C.Yan,S.Zhongning,J.Wang,andA.Rasool,“N6:CFDSimulationofThroatPressureinVenturiScrubberMajidAli,”Appl.Mech.Mater.,vol.173,pp.3630–3634,2012.
VIII.A.Rahimi,A.Niksiar,andM.Mobasheri,“Consideringrolesofheatandmasstransferforincreasingtheabilityofpressuredropmodelsinventuriscrubbers,”Chem.Eng.Process.ProcessIntensif.,vol.50,no.1,pp.104–112,2011.
IX.C.Goniva,Z.Tukovic,C.Feilmayr,T.Bürgler,andS.Pirker,“SimulationofoffgasscrubbingbyacombinedEulerian-Lagrangianmodel,”SeventhInt.Conf.CFDMiner.ProcessInd.,no.December,pp.1–7,2009.
X.D.B.RobertsandJ.C.Hill,“Atomizationinaventuriscrubber,”Chem.Eng.Commun.,vol.12,no.1–3,pp.33–68,1981.
XI.D.FernándezAlonso,J.A.S.Gonçalves,B.J.Azzopardi,andJ.R.Coury,“DropsizemeasurementsinVenturiscrubbers,”Chem.Eng.Sci.,vol.56,no.16,pp.4901–4911,2001.
XII.F.AhmadvandandM.R.Talaie,“CFDmodelingofdropletdispersioninaVenturiscrubber,”Chem.Eng.J.,vol.160,no.2,pp.423–431,2010.
XIII.H.E.Hesketh,“FineParticleCollectionEfficiencyRelatedtoPressureDrop,ScrubbantandParticleProperties,andContactMechanism,”J.AirPollut.ControlAssoc.,vol.24,no.10,pp.939–942,1974.
XIV.H.Haller,E.Muschelknautz,andT.Schultz,“VenturiScrubberCalculationandOptimization,”vol.12,pp.188–195,1989.
XV.H.SunandB.J.Azzopardi,“Modellinggas-liquidflowinVenturiscrubbersathighpressure,”ProcessSaf.Environ.Prot.Trans.Inst.Chem.Eng.PartB,vol.81,no.4,pp.250–256,2003.
XVI.J.R.Coury,G.Guerra,R.Be,andJ.A.S.Gonc,“PressureDropandLiquidDistributioninaVenturiScrubber:ExperimentalDataandCFDSimulationVad,”2012.
XVII.J.Fathikalajahi,M.Taheri,andM.R.Talaie,“Theoreticalstudyofnonuniformdropletsconcentrationdistributiononventuriscrubberperformance,”Part.Sci.Technol.,vol.14,no.2,pp.153–164,1996.
XVIII.J.F.andM.R.Talaie,“THEEFFECTOFDROPLETSIZEDISTRIBUTIONONLIQUIDDISPERSIONINAVENTURISCRUBBER,”J.AerosolSci.Vol.,vol.28,no.1,pp.291–292,1997.
XIX.J.A.S.Gonçalves,M.A.M.Costa,M.L.Aguiar,andJ.R.Coury,“AtomizationofliquidsinaPease-AnthonyVenturiscrubber:PartII.Dropletdispersion,”J.Hazard.Mater.,vol.116,no.1–2,pp.147–157,2004.
XX.J.A.S.Gonçalves,D.F.Alonso,M.A.M.Costa,B.J.Azzopardi,andJ.R.Coury,“Evaluationofthemodelsavailableforthepredictionofpressuredropinventuriscrubbers,”J.Hazard.Mater.,vol.81,no.1–2,pp.123–140,2001.
XXI.K.C.GoalandK.G.T.Hollands,“AGeneralMethodforPredictingParticulateCollectionEfficiencyofVenturiScrubbers,”Ind.Eng.Chem.Fundam.,vol.16,no.2,pp.186–193,1977.
XXII.M.TaheriandA.Mohebbi,“N3:Designofartificialneuralnetworksusingageneticalgorithmtopredictcollectionefficiencyinventuriscrubbers,”J.Hazard.Mater.,vol.157,no.1,pp.122–129,2008.
XXIII.M.TaheriandG.F.Haines,“Optimizationoffactorsaffectingscrubberperformance,”J.AirPollut.ControlAssoc.,vol.19,no.6,pp.427–431,1969.
XXIV.M.Lehner,“AerosolSeparationEfficiencyofaVenturiScrubberWorkinginSelf-PrimingMode,”AerosolSci.Technol.,vol.28,no.5,pp.389–402,1998.
XXV.M.A.M.Costa,P.R.Henrique,J.A.S.Gonçalves,andJ.R.Coury,“DropletsizeinarectangularVenturiscrubber,”BrazilianJ.Chem.Eng.,vol.21,no.2,pp.335–343,2004.
XXVI.M.Ali,C.Q.Yan,Z.N.Sun,J.J.Wang,andK.Mehboob,“N5:CFDSimulationofPredictionofPressureDropinVenturiScrubber,”Appl.Mech.Mater.,vol.166–169,pp.3008–3011,2012.
XXVII.M.Costa,A.Riberio,E.Tognetti,M.Aguiar,J.Gonclaves,andJ.Coury,“Performanceofaventuriscrubberintheremovaloffinepowderfromaconfinedgasstream,”Mater.Res.,vol.18,no.2,pp.177–179,2005.
XXVIII.M.M.Toledo-Melchoretal.,“NumericalsimulationofflowbehaviourwithinaVenturiscrubber,”Math.Probl.Eng.,vol.2014,pp.1–8,2014.
XXIX.M.BalandB.C.Meikap,“N10:PredictionofhydrodynamiccharacteristicsofaventuriscrubberbyusingCFDsimulation,”SouthAfricanJ.Chem.Eng.,vol.24,pp.222–231,2017.
XXX.N.V.AnanthanarayananandS.Viswanathan,“EffectofnozzlearrangementonVenturiscrubberperformance,”Ind.Eng.Chem.Res.,vol.38,no.12,pp.4889–4900,1999.
XXXI.N.P.Gulhane,A.D.Landge,D.S.Shukla,andS.S.Kale,“Experimentalstudyofiodineremovalefficiencyinself-primingventuriscrubber,”Ann.Nucl.Energy,vol.78,pp.152–159,2015.
XXXII.N.Horiguchi,H.Yoshida,andY.Abe,“N9:Numericalsimulationoftwo-phaseflowbehaviorinVenturiscrubberbyinterfacetrackingmethod,”Nucl.Eng.Des.,vol.310,pp.580–586,2016.
XXXIII.N.Horiguchi,H.Yoshida,S.Uesawa,A.Kaneko,andY.Abe,“Icone21-16287FilterVenting:PreliminaryAnalysisandObservationofHydraulic,”pp.1–6,2013.
XXXIV.P.Goel,A.Moharana,andA.K.Nayak,“Experimentalstudyofpressuredropinself-primingandsubmergedventuriscrubber,”pp.14–17.
XXXV.P.Goel,A.Moharana,andA.K.Nayak,“Measurementofscrubbingbehaviourofsimulatedradionuclideinasubmergedventuriscrubber,”Nucl.Eng.Des.,vol.327,no.December2017,pp.92–99,2018.
XXXVI.R.H.Boll,“ParticleCollectionandPressureDropinVenturiScrubbers,”Ind.Eng.Chem.Fundam.,vol.12,no.1,pp.40–50,1973.
XXXVII.R.W.K.AllenandA.VanSanten,“DesigningforpressuredropinVenturiscrubbers:Theimportanceofdrypressuredrop,”Chem.Eng.J.Biochem.Eng.J.,vol.61,no.3,pp.203–211,1996.
XXXVIII.S.Nasseh,A.Mohebbi,Z.Jeirani,andA.Sarrafi,“N2:Predictingpressuredropinventuriscrubberswithartificialneuralnetworks,”J.Hazard.Mater.,vol.143,no.1–2,pp.144–149,2007.
XXXIX.S.CalvertandD.Lundgren,“ParticleCollectioninaVenturiScrubber,”J.AirPollut.ControlAssoc.,vol.18,no.10,pp.677–678,1968.
XL.S.Viswanathan,C.C.St.Pierre,andA.W.Gnyp,“Jetpenetrationmeasurementsinaventuriscrubber,”Can.J.Chem.Eng.,vol.61,no.4,pp.504–508,1983.
XLI.S.I.PakandK.S.Chang,“N1:PerformanceestimationofaVenturiscrubberusingacomputationalmodelforcapturingdustparticleswithliquidspray,”J.Hazard.Mater.,vol.138,no.3,pp.560–573,2006.
XLII.S.Calvert,“VenturiandOtherAtomizingScrubbersEfficiencyandPressureDrop,”AIChE,vol.16,no.3,pp.392–396,1970.
XLIII.S.C.Yung,H.F.Barbarika,andS.Calvert,“Pressurelossinventuriscrubbers,”J.AirPollut.ControlAssoc.,vol.27,no.4,pp.348–351,1977.
XLIV.S.Nasseh,A.Mohebbi,A.Sarrafi,andM.Taheri,“N4:Estimationofpressuredropinventuriscrubbersbasedonannulartwo-phaseflowmodel,artificialneuralnetworksandgeneticalgorithm,”Chem.Eng.J.,vol.150,no.1,pp.131–138,2009.
XLV.S.IlKim,J.B.Lee,J.H.Jung,K.S.Ha,H.Y.Kim,andJ.H.Song,“IntroductionoffilteredcontainmentventingsystemexperimentalfacilityinKAERIandresultsofaerosoltest,”Nucl.Eng.Des.,vol.326,no.November2017,pp.344–353,2018.
XLVI.T.J.OvercampandS.R.Bowen,“EffectofThroatLengthandDiffuserAngleonPressureLossAcrossaVenturiScrubber,”J.AirPollut.ControlAssoc.,vol.33,no.6,pp.600–604,1983.
XLVII.V.Sekar,A.W.Gnyp,andC.C.S.Pierre,“ExaminationofGas-LiquidFlowinaVenturiScrubber,”Ind.Eng.Chem.Fundam.,vol.23,no.3,pp.303–308,1984.
XLVIII.V.G.Guerra,M.A.F.Daher,M.V.Rodrigues,J.A.S.Gonçalves,andJ.R.Coury,“DropletInteractionintheLiquidInjectionbyMultipleOrificesinthePerformanceofaVenturiScrubber,”Mater.Sci.Forum,vol.591–593,pp.896–901,2008.
XLIX.V.G.Guerra,J.A.S.Gon??alves,andJ.R.Coury,“ExperimentalinvestigationontheeffectofliquidinjectionbymultipleorificesintheformationofdropletsinaVenturiscrubber,”J.Hazard.Mater.,vol.161,no.1,pp.351–359,2009.
L.V.G.Guerra,J.A.S.Gonçalves,andJ.R.Coury,“ExperimentalverificationoftheeffectofliquiddepositionondropletsizemeasuredinarectangularVenturiscrubber,”Chem.Eng.Process.ProcessIntensif.,vol.50,no.11–12,pp.1137–1142,2011.
LI.X.Gamisans,M.Sarrà,F.J.Lafuente,andB.J.Azzopardi,“Thehydrodynamicsofejector-Venturiscrubbersandtheirmodellingbyanannularflow/boundarylayermodel,”Chem.Eng.Sci.,vol.57,no.14,pp.2707–2718,2002.
LII.Y.Zhou,Z.Sun,H.Gu,andZ.Miao,“Structuredesignonimprovinginjectionperformanceforventuriscrubberworkinginself-primingmode,”Prog.Nucl.Energy,vol.80,pp.7–16,2015.
LIII.Yung,“venturiscrubberperformancemodel.PDF,”vol.7,no.9,pp.10–13,1978.
LIV.Y.Zhou,Z.Sun,H.Gu,andZ.Miao,“Experimentalresearchonaerosolscollectionperformanceofself-primingventuriscrubberinFCVS,”Prog.Nucl.Energy,vol.85,pp.771–777,2015.
LV.Y.Zhou,Z.Sun,H.Gu,andZ.Miao,“Performanceofiodidevapourabsorptionintheventuriscrubberworkinginself-primingmode,”Ann.Nucl.Energy,vol.87,pp.426–434,2016.
View
Download