Conference on “Emerging Trends in Applied Science, Engineering and Technology”
Organized by MDSG Research Group, Malaysia
Conference on “Emerging Trends in Applied Science, Engineering and Technology”
Organized by MDSG Research Group, Malaysia
I. *** Ancheta Structurală în Agricultură 2013 – rezultate finale, INS 2014
II. *** Eurostat – Agriculture, forestry and fishery statistics – 2013 edition
III. *** MADR, Direcția Generală de Dezvoltare Rurală AM PNDR, Situația proiectelor depuse la data de 30.12.2015, PNDR 2007-2013
IV. *** Programul Naţional de Dezvoltare Rurală 2007-2013
V. Alboiu Cornelia (2009) – Agricultura de Subzistență în România: un modus vivendi? Seminar 111 EAAE-IAAE
VI. Dobre Ramona, Cîrstea A. C. (2013) – Land property structure – a limiting factor in strengthening the agricultural holdings, Scientific Papers Series Management , Economic Engineering in Agriculture and Rural Development, Vol. 13, Issue 2
VII. Done I., Luminita Chivu, Andrei, J. V., Mirela Matei (2012), Using labor force and green investments in valuing the Romanian agriculture potential, Journal of Food, Agriculture & Environment Vol.10 (3&4 ): 737 – 741
VIII. Popescu M. (2004) – Eficiența economică, socială și ecologică în contextual dezvoltării durabile a agriculturii și integrării în Uniunea Europeană,
IX. Turek Rahoveanu A. (2007) – Evoluția formelor de proprietate funciară în agricultura României, Editura Cartea Universitară, ISBN 978-973-731-493-2
X. Turek Rahoveanu A., Stoian Elena, Turek Rahoveanu Magdalena (2013) – Analysis of the exploitation structures and land management in Romania vs. European Union; International Journal of Sustainable Economies Management, Vol.2, Issues 4, pg. 47-54, ISSN 2160 -9659
XI. Zahiu Letiţia, Dachin Anca, Turek Rahoveanu A. (2007) – Factorii care influenţează performanţa economică în fermele mari din România, Dezvoltarea durabilă a spaţiului rural”, ASE, Facultatea de Economie Agroalimentară şi a Mediului, Bucureşti, 15-16 iunie 2007, volum ISBN 978-606-505-025-9
XII. Zahiu Letiția, Toma Elena, Dachin Anca, Alexandri Cecilia, (2010) – Agricultura în economia României : între așteptări si realități, Editura Ceres, ISBN: 978-973-40-0841-4
I. Ab. Ghani, A., Chang, C. K., Leow, C. S., & Zakaria, N. A. (2012). Sungai Pahang digital flood mapping: 2007 flood. International Journal of River Basin Management, 10(2), 139–148. https://doi.org/10.1080/15715124.2012.680022
II. Aminuddin AB. G., A., Chang, C. K., Leow, C. S., & Zakaria, N. A. (2012). Sungai Pahang digital flood mapping: 2007 flood. International Journal of River Basin Management, 10(2), 139–148.
III. Azam, M.; San Kim, H.; Maeng, S.J. Development of flood alert application in Mushim stream watershed Korea. Int. J.Disast. Risk Re. 2017, 21, 11-26.
IV. Banitt, A. Simulating a century of hydrographs e Mark Twain reservoir. In Proceeding of 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June–1 July, 2010
V. Department of Irrigation and Drainage (DID) (2009). Retrieved from https://www.water.gov.my/#?mid=209
VI. Environmental and Water Resources Instit. Curve number hydrology: State of the practice. Hawkins, R.H., Ward, T.J., Woodward, D.E., Van Mullem, J.A., Eds; American Society of Civil Engineers: Reston, VA, USA, 2009.
VII. Gupta, H.V.; Kling, H.; Yilmaz, K.K.,; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol.2009, 377, 80–91.
VIII. Hamby, D. A review of techniques for parameter sensitivity analysis of environmental models. Environ. Monit. Assess. 1994, 32, 135–154.
IX. Kirpich, Z. Time of concentration of small agricultural watersheds. Civil Engineer.1940, 10, 362.
X. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol.1970, 10, 282–290.
XI. Neter, J.; Wasserman, W.; Kutner, M.H. Applied statistical models. Richard D. Irwin, Inc.: Burr Ridge, IL, 1990.
XII. Suhaila, J., S. MohdDeni, W.Z. Wan Zin& A.A., Jemain. (2010). Trends in Peninsular Malaysia Rainfall Data during The Southwest Monsoon and Northeast Monsoon Seasons: 1975-2004. SainsMalaysiana, 39:533-542.
XIII. Yilma, H.M.; Moges, S.A. Application of semi-distributed conceptual hydrological model for flow forecasting on upland catchments of Blue Nile River Basin, a case study of GilgelAbbay catchment. Catchment Lake Res. 2007, 6, 1–200.
XIV. Yusop, Z.; Chan,C.; Katimon, A. Runoff characteristics and application of HEC-HMS for modeling stormflow hydrograph in an oil palm catchment. Water Sci. Technol. 2007, 56, 41–48.
I. D. C. Whitehead, Nutrient Elements in Grassland: soil-plant-animal relationship. New Yory, USA: CABI Publishing, 2000.
II. D. D. Tilman, Nutrient Pollution of Coastal Rivers, Bays, and Seas. Washington: Ecological Society of America, 2000.
III. H. Juahir, S. M. Zain, M. K. Yusoff, T. Hanidza, A. M. Armi, M. E. Toriman, M. Mokhtar, “Spatial water quality assessment of Langat River Basin (Malaysia) using environ metric techniques”, Environ Monitoring and Assessment, Vol: 173, Issue: 1-4, pp. 625-641, 2011.
IV. H. Li, J. Hun-Wei, L. M. Cai, “Nutrient Load Estimation Methods For Rivers”, International Journal of Sediment Research, Vol: 18, Issue: 4, pp. 346-351, 2003.
V. Helsinki Commission, Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment. Finland: Baltic Marine Environment Protection Commission, 2009.
VI. K. McArthur, M. Clark, Nitrogen and Phosphorus Loads to Rivers in the Manawatu-Wanganui Region: An Analysis of Low Flow State: Technical Report to Support Policy Development. Horizons Regional Council, 2007.
VII. M. K. Lindenberg, The Quantity, Characteristics, Source and Nutrient Input Of Groundwater Seepage Into The Indian River Lagoon. Florida: University of Florida, 2001.
VIII. N. M. Pieterse, W. Bleuten, S. E. Jørgensen, “Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries”, Journal of Hydrology, Vol: 271, Issue: 1-4, pp. 213-225, 2003.
IX. S. Bricker, B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, J. Woerner, “Effects of nutrient enrichment in the nation’s estuaries: A decade of change”, Harmful Algae, Vol: 8, Issue: 1, pp. 21–32, 2008.
X. United States Environmental Protection Agency, Nitrogen and Phosphorus Pollution Data Access Tool. Retrieved November 1, 2014, from: http://www2.epa.gov.
XI. World Health Organization and European Commission, Eutrophication and health. Luxembourg: Office for Official Publications of the European Communities, 2002.
XII. Y. P. Sheng, E. A. Yassuda, C. Yang, Modeling the Impact of Nutrient Load Reduction on Water Quality and Sea grass in Roberts Bay and Little Sarasota Bay. Florida: Coastal & Oceanographic Engineering Department, University of Florida, 1995.
I. Ahmed (2012). Synthesis and structural features of mesoporousNiO/TiO2 nanocomposites prepared by sol–gel method for photodegradation of MB dye. Journal of Photochemistry and Photobiology A: Chemistry 238, 63– 70
II. Ali SepharShikoh, Zubair Ahmad, FaridTouati, R.A. Shakoor, Shaheen A. Al-Muhtaseb (2017). Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques. Ceramics International 43, 10540–10545
III. Guoguang Liu, Xuezhi Zhang, YajieXu, XinshuNiu, LiqingZheng, Xuejun Ding (2005). The preparation of Zn2+-doped TiO2 nanoparticles by sol–gel and solid phase reaction methods respectively and their photocatalytic activities. Chemosphere 59, 1367–1371
IV. Ho Chang, Hung-Ting Su, Wei-An Chen, K. David Huang, Shu-HuaChien, Sih-Li Chen, Chih-Chieh Chen (2010). Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition. Solar Energy 84, 130–136
V. HU Hai, XIAO Wen-jun, YUAN Jian, SHI Jian-wei, CHEN Ming-xi, SHANG GUAN Wen-feng (2007). Preparations of TiO2 film coated on foam nickel substrate by sol-gel processes and its photocatalytic activity for degradation of acetaldehyde. Journal of Environmental Sciences 19, 80–85
VI. Hua Yu, Xin-Jun Li, Shao-Jian Zheng, Wei Xu (2006). Photocatalytic activity of TiO2 thin film non-uniformly doped by Ni. Materials Chemistry and Physics 97, 59–63
VII. Ibram Ganesh, A. K. Gupta, P. P. Kumar, P. S. C. Sekhar, K. Radha, G. Padmanabham, and G. Sundararajan (2012). Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications. The Scientific World Journal 1-16
VIII. Jian-Hui Sun, Shu-Ying Dong, Jing-LanFeng, Xiao-Jing Yin, Xiao-Chuan Zhao (2011). Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation. Journal of Molecular
IX. Catalysis A: Chemical 335, 145–150
X. Jixiang Chen, Na Yao, RijieWang, Jiyan Zhang (2009). Hydrogenation of chloronitrobenzene to chloroaniline over Ni/TiO2 catalysts prepared by sol–gel method. Chemical Engineering Journal 148, 164–172
XI. K. Pomoni, A. Vomvas, Chr. Trapalis (2008). Electrical conductivity and photoconductivity studies of TiO2 sol–gel thin films and the effect of N-doping. Journal of Non-Crystalline Solids 354, 4448–4457
XII. L.S. Yoong, F.K. Chong, Binay K. Dutta (2009). Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 34, 1652–1661
XIII. Larissa Grinis, SnirDor, AshiOfir, ArieZaban (2008). Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 198, 52–59
XIV. Ludwig Gutzweiler, Tobias Gleichmann1, Laurent Tanguy, Peter Koltay, Roland Zengerle, Lutz Riegger (2017). Open microfluidic gel electrophoresis: Rapid and low cost separation and analysis of DNA at the nanoliter scale. Electrophoresis, 38, 1764–1770
View | DownloadI. Abhinav Choudhury, Lepakshi Barbora, Divyanshu Arya, BanwariLal, Sanjukta Subudhi, S. Venkata Mohan, Shaikh Z. Ahammad and Anil Verma. 2017. Effect of electrode surface properties on enhanced electron transfer activity in microbial fuel cells. 17: 186-192
II. Daniel Sohmen, Shinobu Chiba, Naomi Shimokawa-Chiba, C. Axel Innis, Otto Berninghausen, Roland Beckmann, Koreaki Ito and Daniel N. Wilson. 2015. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. NATURE COMMUNICATIONS 6 6941: 1-10
III. Dengbin Yu, Lu Bai, Junfeng Zhai, Yizhe Wang, Shaojun Dong. 2017. Toxicity detection in water containing heavy metal ions with a self-powered microbial fuel cell-based biosensor. Talanta 168: 210–216
IV. Ezgi Bayram and Erol Akyilmaz. 2016. Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination. Sensors and Actuators B 233: 409–418
V. Jumma Shaikh, Niranjan P Patil, Vikas Shinde and Vishwas B Gaikwad. 2016. Simultaneous Decolorization of Methyl Red and Generation of Electricity in Microbial Fuel Cell by Bacillus circulans NPP1. Journal of Microbial & Biochemical Technology volume 8(5): 428-432
VI. Jung Rae Kim, Giuliano C. Premier, Freda R. Hawkes, Richard M. Dinsdale and Alan J. Guwy. 2009. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources 187: 393–399
VII. Mirella Di Lorenzo, Alexander R. Thomson, Kenneth Schneider, Petra J. Cameron and Ioannis Ieropoulos. 2014. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosensors and Bioelectronics 62: 182–188
VIII. Mostafa Rahimnejad, Arash Adhami, SoheilDarvari, Alireza Zirepour, Sang-Eun Oh. 2015. Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal 54: 745–756
IX. Naveen Shankar, Arun Panchapakesan, Suhas Bhandari, H N Ravishankar. 2014. Simultaneous cellulose hydrolysis and bio-electricity generation in a mediatorless Microbial Fuel Cell using a Bacillus flexus strain isolated from wastewater. Research in Biotechnology, 5(1): 6-12
X. Nengwu Zhu, Xi Chen, Ting Zhang, Pingxiao Wu, Ping Li and Jinhua Wu, 2011. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresource Technology 102: 422–426
XI. Niloofar Hashemi, Joshua M. Lackore, Farrokh Sharifi, Payton J. Goodrich, Megan L. Winchell and NastaranHashemi. 2016. A paper-based microbial fuel cell operating under continuous flow condition. TECHNOLOGY volume 4, Number 2: 98-103
XII. Pascale B, Beauregard, Yunrong Chai, Hera Vlamakis, Richard Losick, and Roberto Kolter, 2012. Bacillus subtilis biofilm induction by plant polysaccharides. PNAS: E1621–E1630
XIII. Rene A. Rozendal, Hubertus V. M. Hamelers, and Cees J. N. Buisman, 2006. Effects of Membrane Cation Transport on pH and Microbial Fuel Cell Performance. Environ. Sci. Technol 40: 5206-5211
XIV. Wei Yang, Jun Li, Qian Fu, Liang Zhang, Xun Zhu and Qiang Liao. 2017. A simple method for preparing a binder-free paper-based air cathode for microbial fuel cells. Bioresource Technology 241: 325–331
XV. Xinyang Li, Guicheng Liu, Fujun Ma, Shaobin Sun, Siyu Zhou, Ryanda Enggar Anugrah Ardhic, JoongKee Lee and Hong Yao. 2018. Enhanced power generation in a single-chamber dynamic membrane microbial fuel cell using a nonstructural air-breathing activated carbon fiber felt cathode. Energy Conversion and Management 172: 98–104
XVI. Xiayuan Wu, Xiaomin Xiong, Gianluca Brunetti, Xiaoyu Yong, Jun Zhou, Lijuan Zhang, Ping Wei and Honghua Jia. 2017. Effect of MWCNT-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells. The Royal Society of Chemistry Advanced 7: 53932-53940
XVII. Yoganathan K and Ganesh P. 2015. Electrogenicity assessment of Bacillus subtilis and Bacillus megaterium using Microbial Fuel Cell technology. International Journal of Applied Research 1(13): 435-438
XVIII. Zainab Z. Ismail and Ali Jwied Jaeel. 2013. Sustainable Power Generation in Continuous Flow Microbial Fuel Cell Treating Actual Wastewater: Influence of Biocatalyst Type on Electricity Production. The Scientific World Journal Volume 2013: 1-7
View | DownloadI. Bard, A. J., Faulkner, L. R., Swain, E., & Robey, C. (n.d.). (2001). Fundamentals and Application
II. Chandrasekhar, K., Kadier, A., Kumar, G., Nastro, R. A., &Jeevitha, V. (2018). Challenges in Microbial Fuel Cell and Future Scope, 483–499.
III. Deng, Q., Li, X., Zuo, J., Ling, A., & Logan, B. E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources, 195(4), 1130–1135.
IV. Franks, A. E., & Nevin, K. P. (2010). Microbial fuel cells, a current review. Energies, 3(5), 899–919.
V. Kumar, R., Singh, L., Zularisam, A. W., & Hai, F. I. (2018). Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. International Journal of Energy Research, 42(2), 369–394.
VI. Li, S., Cheng, C., & Thomas, A. (2017). Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. Advanced Materials, 29(8).
VII. Liang, P., Huang, X., Fan, M. Z., Cao, X. X., & Wang, C. (2007). Composition and distribution of internal resistance in three types of microbial fuel cells. Applied Microbiology and Biotechnology, 77(3), 551–558.
VIII. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., …Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), 5181–5192.
IX. Nicholson, R. S. (1965). Theory and Application of Cyclic Voltammetry f m Measurement of Electrode Reaction Kinetics. Analytical Chemistry, 37(11), 1351–1355.
X. Ortiz, M. E., & Nu, L. J. (2003). Voltammetric determination of the heterogeneous charge transfer rate constant for superoxide formation at a glassy carbon electrode in aprotic medium, 549, 1–4.
XI. Ozaki, J., Mitsui, M., Nishiyama, Y., Cashion, J. D., & Brown, L. J. (1998). Effects of Ferrocene on Production of High Performance Carbon Electrodes from Poly ( furfuryl alcohol ), (17), 3386–3392.
XII. Santoro, C., Arbizzani, C., Erable, B., &Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244.
XIII. Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 9(21), 2619–2629.
XIV. Taherian, R. (2014). A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 265, 370–390.
XV. Tursun, H., Liu, R., Li, J., Abro, R., Wang, X., Gao, Y., & Li, Y. (2016). Carbon material optimized biocathode for improving microbial fuel cell performance. Frontiers in Microbiology, 7(JAN), 1–9.
XVI. Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. T. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science and Technology, 42(13), 4971–4976.
View | DownloadI. Csegroups.case.edu. (2017). Download a Data File | Bearing Data Center. [online] Available at: http://csegroups.case.edu/bearingdatacenter/pages/download-data-file [Accessed 31 Aug. 2017].
II. Igba, J., Alemzadeh, K., Durugbo, C. and Eiriksson, E. (2016). Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes. Renewable Energy, 91, 90-106. doi: 10.1016/j.renene.2016.01.006
III. Jiang, Q., Shen, Y., Li, H. and Xu, F. (2018). New Fault Recognition Method for Rotary Machinery Based on Information Entropy and a Probabilistic Neural Network. Sensors, 18(2), 337. doi: 10.3390/s18020337
IV. Liu, W.Y., Tang, B.P., Han, J.G., Lu, X.N., Hu, N.N. and He, Z.Z. (2015). The structure healthy condition monitoring and fault diagnosis methods in wind turbines: A review. Renew. Sustain. Energy Rev. 44, 466–472.
V. Muszynska, A. (1995). Vibrational Diagnostics of Rotating Machinery Malfunctions. International Journal Of Rotating Machinery, 1(3-4), 237-266. doi: 10.1155/s1023621x95000108
VI. Shukla, S. and Karma, V. (2014). Fault Detection of Two Stage Spur Gearbox using Time Domain Technique: Effect of Tooth Breakage and Improper Chamfering. International Journal of Innovative Science, Engineering & Technology, Vol. 1(Issue 4). ISSN 2348 – 7968
VII. Soleimani, A. and Khadem, S. (2015). Early fault detection of rotating machinery through chaotic vibration feature extraction of experimental data sets. Chaos, Solitons& Fractals, 78, 61-75. doi: 10.1016/j.chaos.2015.06.018
VIII. TabriziZarringhabaei, A.A. (2015). Development of new fault detection methods for rotating machines (roller bearings) (PhD Thesis). Mechanical and Aerospace Engineering Department, Porto Institutional Repository, Politenico di Torino.
IX. Tatis De leon, R. (2012). Vibration Measurement for Rotatory Machines (Degree Programme in Automation Engineering). HAMK University of Applied Science.
X. Zayeri, R., Attaran, B., Ghanbarzadeh, A. and Moradi, S. (2011). Artificial Neural Network Based Fault Diagnostics of Rolling Element bearings using Continuous Wavelet Transform. The 2Nd International Conference on Control, Instrumentation, and Automation (IEEE), At Shiraz University, Iran. doi: 10.1109/ICCIAutom.2011.6356754
View | DownloadI. Aronu UE, Hessen ET, Haug-Warberg T, Hoff KA, Svendsen HF. Equilibrium absorption of carbon dioxide by amino acid salt and amine amino acid salt solutions. Energy procedia. 2011;4:109-16.
II. Bougie F, Iliuta MC. Sterically hindered amine-based absorbents for the removal of CO2 from gas streams. J ChemEng Data. 2012;57(3):635-69.
III. Chung P-Y, Soriano AN, Leron RB, Li M-H. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine+ piperazine+ water). J ChemThermodyn. 2010;42(6):802-7.
IV. Donaldson TL, Nguyen YN. Carbon dioxide reaction kinetics and transport in aqueous amine membranes. IndEngChemFundam. 1980;19(3):260-6.
V. Edwards T, Maurer G, Newman J, Prausnitz J. Vapor‐liquid equilibria in multicomponentaqueous solutions of volatile weak electrolytes. AIChE J. 1978;24(6):966-76.
VI. Gabrielsen J. CO2 capture from coal fired power plants. Graduate Schools Yearbook 2005.2005:61.
VII. Hamzehie ME, Najibi H. Carbon dioxide absorption in aqueous solution of potassium glycinate+ 2-amino-2-methyl-1-propanol as new absorbents. RSC Advances. 2016;6(67):62612-23.
VIII. Kang D, Park S, Jo H, Min J, Park J. Solubility of CO2 in amino-acid-based solutions of (potassium sarcosinate),(potassium alaninate+ piperazine), and (potassium serinate+ piperazine). J ChemEng Data. 2013;58(6):1787-91.
IX. Kumar P, Hogendoorn J, Feron P, Versteeg G. Equilibrium solubility of CO2 in aqueous potassium taurate solutions: Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids. IndEngChem Res. 2003;42(12):2832-40.
X. Lerche BM, Stenby EH, Thomsen K. CO 2 capture from flue gas using amino acid salt solutions: Technical University of DenmarkDanmarksTekniskeUniversitet, Department of ChemistryInstitut for Kemi; 2012.
XI. Mondal MK, Balsora HK, Varshney P. Progress and trends in CO2 capture/separation technologies: a review. Energy. 2012;46(1):431-41.
XII. Muñoz DM, Portugal AF, Lozano AE, José G, de Abajo J. New liquid absorbents for the removal of CO 2 from gas mixtures. Energy & Environmental Science. 2009;2(8):883-91.
XIII. Nainar M, Veawab A. Corrosion in CO2 capture process using blended monoethanolamine and piperazine. IndEngChem Res. 2009;48(20):9299-306.
XIV. Portugal A, Sousa J, Magalhães F, Mendes A. Solubility of carbon dioxide in aqueous solutions of amino acid salts. ChemEng Sci. 2009;64(9):1993-2002.
XV. Sakwattanapong R, Aroonwilas A, Veawab A. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines. IndEngChem Res. 2005;44(12):4465-73.
XVI. Song H-J, Lee S, Maken S, Park J-J, Park J-W. Solubilities of carbon dioxide in aqueous solutions of sodium glycinate. Fluid Phase Equilib. 2006;246(1):1-5.
XVII. Suleman H, Maulud AS, Man Z. Carbon Dioxide Solubility in Aqueous Potassium Lysinate Solutions: High Pressure Data and Thermodynamic Modeling. Procedia Engineering. 2016;148:1303-11.
XVIII. Suleman H, Maulud AS, Syalsabila A. Thermodynamic modelling of carbon dioxide solubility in aqueous amino acid salt solutions and their blends with alkanolamines. Journal of CO2 Utilization. 2018;26:336-49.
XIX. Syalsabila A, Maulud AS, Nordin NAHM, Suleman H, editors. VLE of carbon dioxide loaded aqueous potassium lysinate with separate blends of piperazine and 2-amino-2-methyl-1-propanol. AIP Conference Proceedings; 2018: AIP Publishing.
XX. Van Holst J, Politiek PP, Niederer JP, Versteeg GF, editors. CO2 capture from flue gas using amino acid salt solutions. Proceedings of 8th International Conference on Greenhouse Gas Control Technologies; 2006.
I. Abramov A. Truth and fiction about the Kremlin necropolis and the Mausoleum. Moscow: Eksmo, 2005.
II. Afanasyev K. N. From the history of Soviet architecture 1917-1925.
III. Brian Curran. The Egyptian Renaissance. The after life of Ancient Egypt in early Modern Italy. Chicago: University of Chicago Press. 2007.
IV. Brodsky B.. The heart of the Kremlin. Moscow: Fine arts, 1996.
V. Curl J.S. Egyptian Revival. London. 2005.
VI. Demkina, S. M., Davydova, I. I., Novikova E. B. Architect
VII. F. O. Shekhtel. Moscow, 2009.
VIII. Jean-Marcel Humbert, Michael Pantazzi, Christiane Ziegler. Egyptomania; Egypt in Western art. 1994.
IX. Khan-Magomedov S. O. Hundred masterpieces of Soviet architectural avant-garde. Moscow: Bilingua, editorial URSS. 2005.
X. Khan-Magomedov S. O., Lenin’s Mausoleum. Moscow: S. E. Gordeev, 2012.
XI. Moscow: Documents and materials. 1963.
XII. Nashchokina M. V. Architects of Moscow art Nouveau. Moscow. 1998.
XIII. Riabchikov, E. I., Abramov A. S., Romanovsky.PP. Red square Moscow: Moscow worker Press. 1980.
XIV. Strada Vittorio. About the mausoleum of Lenin. Kontinent No. 77. Moscow: Continent, 1993.
XV. Vaskin. A. Shchusev: the Architect of all the Russias. Moscow: Young guard, 2015.
XVI. Yaralov U.S. Architects of Moscow. Book 2. Of the twentieth century. Moscow: Moscow worker, 1988.
I. Ámundadóttir, M. L., Lockley, S. W., & Andersen, M. (2017). Unified framework to evaluate non-visual spectral effectiveness of light for human health. Lighting Research & Technology, 49(6), 673-696.
II. Ashar, A. M., Lam, M. C., Zainudin, S., & Ismail, A. K. (2018, September). A preliminary study on the decision support mobile application for remote snakebite management consultation in Malaysia. In AIP Conference Proceedings (Vol. 2016, No. 1, p. 020086). AIP Publishing.
III. Atkinson, K. M., El-Khatib, Z., Barnum, G., Bell, C., Turcotte, M. C., Murphy, M. S. Q., & Wilson, K. (2017). Using Mobile Apps to Communicate Vaccination Records: A City-wide Evaluation with a National Immunization App, Maternal Child Registry and Public Health Authorities. Healthcare quarterly (Toronto, Ont.), 20(3), 41-46.
IV. Beaudoin, D. L., Kupershtok, M., & Demb, J. B. (2017). Selective synaptic connections in the retinal pathway for night vision. Journal of Comparative Neurology.
V. BlueControl. (2018). Retrieved from https://www.hoyavision.com/my/discover-products/for-eye-care-professionals/coatings-and-treatments/bluecontrol/
VI. Che Azemin, M. Z., & Khalilah, A. (2018). Textural analysis in meibomian gland image. International Journal of Allied Health Sciences, 2(1), 215-225.
VII. Che Azemin, M. Z., Ashimi, T. A., & Syah, M. M. (2018). Machine learning cases in clinical and biomedical domains. International Medical Journal Malaysia, 17, 135-140.
VIII. Colombo, L., Melardi, E., Ferri, P., Montesano, G., Attaalla, S. S., Patelli, F., & Rossetti, L. (2017). Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases. BMC ophthalmology, 17(1), 149.
IX. Comparetto, R., & Farini, A. (2018). Blue-blocking spectacles lenses for retinal damage protection and circadian rhythm: evaluation parameters. arXiv preprint arXiv:1806.04751.
X. Hatori, M., Gronfier, C., Van Gelder, R. N., Bernstein, P. S., Carreras, J., Panda, S., & Furukawa, T. (2017). Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ aging and mechanisms of disease, 3(1), 9.
XI. Hilmi, M. R., Che Azemin, M. Z., Mohd Kamal, K., Mohd Tamrin, M. I., Abdul Gaffur, N., & Tengku Sembok, T. M. (2017). Prediction of changes in visual acuity and contrast sensitivity function by tissue redness after pterygium surgery. Current eye research, 42(6), 852-856.
XII. Jamaludin, I., Che Azemin, M. Z., Sapuan, A. H., Zainuddin, A. A., & Hassan, R. (2018). 2D and 3D Complexity Analysis on MRI Images using Fractal Dimension. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1-8), 161-164.
XIII. Lau, C., & Kolli, V. (2017). App use in psychiatric education: a medical student survey. Academic Psychiatry, 41(1), 68-70.
XIV. Leung, T. W., Li, R. W. H., & Kee, C. S. (2017). Blue-light filtering spectacle lenses: optical and clinical performances. PloS one, 12(1), e0169114.
XV. Malik, S., Bibi, N., Khan, S., Sultana, R., & Rauf, S. A. (2017). Mr. Doc: A Doctor Appointment Application System. arXiv preprint arXiv:1701.08786.
XVI. Ng, Andrew. “CS229 Lecture notes.”CS229 Lecture notes 1.1 (2000): 1-3.
XVII. Park, S. I., & Jang, Y. P. (2017). The protective effect of brown-, gray-, and blue-tinted lenses against blue led light-induced cell death in A2E-laden human retinal pigment epithelial cells. Ophthalmic research, 57(2), 118-124.
XVIII. Tamrin, M. I. M., Turaev, S., Che Azemin, M. Z., Razi, M. J. M., & Maifiah, M. H. M. (2019). Benchmarking of halal food products using similarity measures–a conceptual model. Journal of Information Systems and Digital Technologies, 1(1), 17-24.
XIX. Wei, M., & Chen, S. (2018). Impact of spectral power distribution of daylight simulators on whiteness specification for surface colors. Color Research & Application, 43(1), 27-33.
XX. Westland, S., Pan, Q., & Lee, S. (2017). A review of the effects of colour and light on non‐image function in humans. Coloration Technology, 133(5), 349-361.
I. Asian Development Bank, “Key Indicators for Asia and The Pacific 2016” (47th Edition), 2016, pp 119.
II. Cahnman, S.F., “Design Guidelines for Short-Stay Patient Units: Outpatient Observation Prompts New Thinking in Health Care Space Configuration”, Health Facilities Management Magazine (online), 3 May 2017.
III. Department of Statistics Singapore, “Singapore in Figure 2017”, (2017), pp 4, 27.
IV. McDermott, C and Stock G.N., “Hospital Operations and Length of Stay Performance”, International Journal of Operations & Production Management, Vol. 27 (9) (2007), pp 1020-1042.
V. Ministry of Health Malaysia, “Health Facts 2016”, 2016.
VI. Ministry of Health Malaysia, Private Healthcare Facilities and Services Act 1998 and 2006.
VII. Nwagbara, V.C., Rasiah, R, Aslam, M.M, “An Approach toward Public Hospital Performance Assessment”, Medicine, Vol. 95 (36) (2016), pp 1-6.
VIII. Personal observations on planning and design of the hospital development.
IX. Yamaguchi, Y, “Better Healing from Better Hospital Design”, Harvard Business Review (online), 5 October 2015.
I. Asian Development Bank, “Key Indicators for Asia and The Pacific 2016” (47th Edition), 2016, pp 119.
II. Cahnman, S.F., “Design Guidelines for Short-Stay Patient Units: Outpatient Observation Prompts New Thinking in Health Care Space Configuration”, Health Facilities Management Magazine (online), 3 May 2017.
III. Department of Statistics Singapore, “Singapore in Figure 2017”,(2017, pp 4, 27.
IV. McDermott, C and Stock G.N., “Hospital Operations and Length of Stay Performance”, International Journal of Operations & Production Management, Vol. 27 (9) (2007), pp 1020-1042.
V. Ministry of Health Malaysia, “Health Facts 2016”, 2016.
VI. Nwagbara, V.C., Rasiah, R, Aslam, M.M, “An Approach toward Public Hospital Performance Assessment”, Medicine, Vol. 95 (36) (2016), pp 1-6.
VII. Yamaguchi, Y, “Better Healing from Better Hospital Design”, Harvard Business Review (online), 5 October 2015.
I. A. Anis, M. Mohibullah, and V. K. Sharma, “Optimal Hybrid Renewable Energy Systems for Energy Security: A Comparative Study”, International Journal of Sustainable Energy, vol. 29 (1), pp. 48-58, July 2010
II. A. Chiu. “Framework for integrated demand response (DR) and distributed energy resources (DER) models”, NAESB &UCAIug, North America, Tech. Rep. 1.3, September 2009
III. A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, “Autonomous demand-side management based on game theoretic energy consumption scheduling for the future smart grid” IEEE Trans. Smart Grid, vol. 1, no 3, pp. 320-331, 2010
IV. A. Sathisshkumar, S. Jayamani, “Renewable energy management system in home appliance”, Presented at the International Conference on Circuit, Power and Computing Technologies (ICCPCT), Nagercoil, India. March 19-20, 2015
V. C. Davide, C. Vittorio, C. Lorenzo, C. Federica, D. Idiano, and F. Federico, “Evaluating solar energy profitability: A focus on the role of self-consumption”, Energy Conversion and Management, Vol. 88, pp.317-331, 2014
VI. C.H. Lien, H.C. Chen, Y. W. Bai, and M.B. Lin, “Power monitoring and control for electric home appliances based on power line communication”, In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, British Columbia, Canada, pp. 2179-2184, May 2008
VII. H. Jinsoo, C. Chang-Sic, P. Wan-Ki, L. Ilwoo, and K. Sang-Ha, “Smart home energy management system including renewable energy based on zigbee and PLC”, In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, Nevada, USA, January 10-13, 2014
VIII. H. Yamauchi, K. Uchida, and T. Senjyu, “Advanced Smart Home” In Proceedings of the IEEE International Conference on Harmonics and Quality of Power, Hong Kong, China, pp.130-135, Jun 2012
IX. J. Han, C.S. Choi, W. K. Park, and I. Lee, “Green home energy management system through comparison of energy usage between the same kinds of home appliances” In Proceedings of the 15th international symposium on consumer electronics (ISCE), June 2011
X. J. Widén. “Improved photovoltaic self-consumption with appliance scheduling in 200 single-family buildings”, Applied Energy vol. 126, pp.199-212, May 2014
XI. K. Thiyagarajana and R. S. Kumar, “Real time energy management and load forecasting in smart grid using Compact RIO”. Procedia Computer Science. Vol. 85, pp. 656 – 661, 2016
XII. L. Hyunjeong, P. Wan-Ki, L. Il-Woo, “A home energy management system for energy-efficient smart homes”, In Proceedings of the International Conference on Computational Science and Computational Intelligence. Las Vegas, USA, March 10-13, 2014
XIII. L. Jorna, D.N. Michiel, S. Omer, “Own power: Motives of having electricity without the energy company”, Energy Policy, Vol. 39, pp. 5621-5692, 2011
XIV. M. Castillo-Cagigal, A. Gutiérrez, F. Monasterio-Huelin, E. Caamaño-Martín, D. Masa, and J. Jiménez-Leube, “A semi-distributed electric demand-side management system with PV generation for self-consumption enhancement” Energy Conversion and Management, Vol. 52, pp. 2659-2666, 2011
XV. M. Castillo-Cagigal, E. Caamanõ-Martín, E. Matallanas, D. Masa-Bote, A. Gutiérrez, F. Monasterio-Huelin, and J. Jiménez-Leube. “PV self-consumption optimization with storage and Active DSM for the residential sector”, Energy Procedia, Vol. 85, pp.2338-2348, 2011
XVI. M. Fotouhi, J. Soares, O. Abrishambaf, R. Castro, and Z. Vale, “Demand response implementation in smart households”, Energy Buildings, vol. 143, pp. 129-148, May 2017
XVII. X. Chen, T. Wei, and S. Hu, “Uncertainty-aware household appliance scheduling considering dynamic electricity pricing in smart home”, IEEETrans. Smart Grid. Vol. 4, no 2, pp. 932-941, 2013
XVIII. X. Chunqiu, L. Wei, C. Xiaomin, C.D. Flavia, Y. Ting, Y.Z. Albert, “Edge-based energy management for smart homes” In Proceedings of the 16th IEEE Int. Conf. on Dependable, Autonomic & Secure Comp. Athens, Greece, August 12-15, 2018
XIX. Y.S. Son and K. D. Moon, “Home energy management system based on power line communication”, IEEE Trans. Consumer Electron., vol. 56. (3), pp. 1380-1386, August 2010