Special Issue No. – 10, June, 2020

“Quantative Methods in Modern Science” organized by Academic Paper Ltd, Russia

SUPRASUBDUCTION NATURE OF LATE CRETACEOUS MAGMATISM IN THE MONGOL–OKHOTSK SECTOR OF THE PACIFIC FOLD BELT: GEOCHEMICAL AND SR-ND ISOTOPE EVIDENCES

Authors:

Inna M. Derbeko,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00021

Abstract:

The aim of this study is to examine the changes in the petrogenetic model of Late Mesozoic magmatism and the geodynamic evolution of the eastern edge of the Mongol-Okhotsk sector of the Pacific fold belt. The paper presents new Sr-Nd isotope and geochemical data, which were integrated with previously obtained results. It was found that magmatic events experienced three stages: Late Jurassic to 120 Ma; 105–101 Ma; and 95–90 Ma. All rocks are impoverished in Ta, Nb, Sr, Zr. Rocks of the first stage differ from later formations by low concentrations of Rb, Th, U. The isotope characteristics vary within the following values: (87Sr/86Sr)t = 0.7064–0.7089; (143Nd/144Nd)t = 0.5123–0.5126.The model age is T(DM-2) ~1.25 Ga. The sequence of magmatic rock formation in the Mongol-Okhotsk sector of the Pacific folded belt is proposed, and sources of igneous melts are identified. It is shown that the Mongol-Okhotsk sector had subduction setting in the Late Mesozoic.

Keywords:

Magmatism,subduction, Mesozoic,geochemistry,isotopic data,Mongol–Okhotsk orogenic belt,, Pacific folded belt.,

Refference:

I. Agafonenko S.G. Asmolova Ye.I. Osobennosti vnutrennego stroyeniya vulkanogennykh tolshch verkhnego techeniya reki Selemdzha [Peculiarities of the internal structure of volcanogenic formation in the upper reaches of the Selemdzha River]. In:Korrelyatsiya mezozoyskikh kontinentalnykh obrazovaniy Dalnego Vostoka i Vostochnogo Zabaykalya [Correlation of Mesozoic continental formations of the Far East and Eastern Transbaikal]. Chita: Chitageolsyomka, 2000. P. 58–59. (in Russian)
II. Agafonenko S.G. State Geological Map of the Russian Federation 1: 200 000, 2nd edition. Tugur Series. Sheet N-53-XXVI.Saint Petersburg: Karpinsky Russian Geological Research Institute, 2002.
III. Allerge G.J., Dupre B., Lewin E. Thorium/Uranium radio of the earth. Chem. Geol. 1986. V. 56. № 3/4. P. 219–227.
IV. Bogatikov O.A. (ed.) Magmaticheskiye gornyye porody [Magmatic rocks], vol.1. Moscow: Nauka, 1983. 367 p. (in Russian)
V. Chernyshev I.V., Bakharev A.G., Bortnikov N.S., Goltsman YU.V., Kotov A.B., Gamyanin G.N., Chugayev A.V., Salnikova Ye.B., Bairova E.D. Geokhronologiya magmaticheskikh porod rayona zolotorudnogo mestorozhdeniya Nezhdaninskoye (Yakutiya, Rossiya): U-Pb, Rb-Sr i Sm-Nd-izotopnyye dannyye [Geochronology of igneous rocks of Nezhdaninskoye gold deposit (Yakutia, Russia): U-Pb, Rb-Sr and Sm-Nd isotope data]. Geologiya Rudnykh Mestorozhdeniy. 2012. V.54. Iss.6. P.487–512. (in Russian)
VI. Condie K.S. Higt field strength .element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos. 2005. V.79. P. 491–504.
VII. Derbeko I.M, Chugayev A.V., Oleynikova T.I., Bortnikov N.S. Geokhimicheskiye i Sr-Nd izotopnyye svidetelstva nadsubduktsionnogo proiskhozhdeniya mezozoyskogo magmatizma Mongolo-Okhotskogo sektora Tikhookeanskogo skladchatogo poyasa [Geochemical and Sr-Nd isotopic evidence of the suprasubduction origin of the Mesozoic magmatism of the Mongol-Okhotsk sector of the Pacific folded belt]. Doklady Akademii Nauk. 2016. V. 466. Iss. 4. P. 462–466. (in Russian)
VIII. Derbeko I.M. Polozheniye Ulbanskoy strukturno-formatsionnoy zony v skheme strukturno-formatsionnogo rayonirovaniya [Position of the Ulban structural–formational zone in the scheme of structural–formational zonation]. In: Geologiya i mineralnyye resursy Amurskoy oblasti [Geology and mineral resources of Amur Oblast]. Blagoveshchensk: Amurgeolkom. 1995. P. 70. (in Russian)
IX. Derbeko I.M. Pozdnemezozoyskiy etap evolyutsii vostochnogo zvena Mongolo-Okhotskogo orogennogo poyasa [Late Mesozoic stage of evolution of the eastern link of the Mongol-Okhotsk orogenic belt]. Proceedings of XLVI Tectonic meeting. 2014. V.1. P. 111–115. (in Russian)
X. Derbeko I.M. Pozdnemezozoyskiy vulkanizm Mongolo-Okhotskogo poyasa (vostochnoye okonchaniye i yuzhnoye obramleniye vostochnogo zvena poyasa). [Mesozoic volcanism of the Mongol-Okhotsk belt (the eastern edge and the southern framing of the eastern part]. Saarbryukken: LAMBERT Academic Publishing GmbH&Co.KG. 2012. 97 p. (in Russian)
XI. Derbeko I.M. Pozdnemezozoyskiy vulkanizm Priamur’ya (veshchestvennyy sostav, geokhronologiya, geodinamicheskiye obstanovki) [Late Mesozoic volcanism of the Amur River region (material composition, geochronology, geodynamic conditions)]. PhD Dissertation. Blagoveshchensk: Institute of Geology and Nature Management of the Far East Branch of the Russian Academy of Sciences, 2007. 159 p. (in Russian)
XII. Derbeko I.M. Skhema formirovaniya magmaticheskikh kompleksov Selitkanskoy vulkano-plutonicheskoy zony vostochnogo flanga Mongolo-Okhotskogo orogennogo poyasa (Rossiya) po geokhimicheskim dannym [The Selitkan volcano-plutonic zone, the eastern flank of the Mongol-Okhotsk orogenic belt (Russia): Evidence from geochemical data]. Geokhimiya. 2009. V.11. P. 1155–1172. (in Russian)
XIII. Derbeko I.M., Agafonenko S.G., Kozyrev S.K., Vyunov. D.L. Umlekano-Ogodzhinskiy vulkanogennyy poyas (problemy vydeleniya) [The Umlekan-Ogodzha volcanic belt (the problem of separation)]. Litosfera. 2010. V.3. P. 70–77. (in Russian)
XIV. Derbeko I.M., Sorokin A.A., Agafonenko S.G. Geokhimicheskiye osobennosti kislogo magmatizma severo-zapadnogo flanga Khingano-Okhotskogo vulkano-plutonicheskogo poyasa (Ezopskaya i Yam-Alinskaya zony) [Geochemical features of acid magmatism of the northwestern flank of the Khingan-Okhotsk volcano-plutonic belt (Aezop and Yam-Alin zones)]. Tikhookeanskaya Geologiya. 2008. V.1. P. 61-71. (in Russian)
XV. Derbeko I.M., Sorokin A.A., Ponomarchuk V.A., Travin A.V., Sorokin A.P. Pervyye geokhronologicheskiye dannyye dlya lav kislogo sostava Ezop-Yam-Alinskaya vulkano-plutonicheskaya zona Khingano-Okhotskogo vulkanogennogo poyasa [The first geochronological data for acid lavas of the Aezop-Yam-Alin volcano-plutonic zone of the Khingan-Okhotsk volcanic belt]. Doklady Akademii Nauk. 2008. V.419. Iss.1. P.95–99. (in Russian)
XVI. Derbeko I.M., Sorokin A.A., Salnikova Ye.B., Kotov A.B, Sorokin A.P., Yakovleva S.Z., Fedoseyenko A.M., Plotkina Yu.V. Vozrast kislogo vulkanizma Selitkanskoy zony Khingano-Okhotskogo vulkano-plutonicheskogo poyasa (Dalniy Vostok Rossii) [Age of persilicic volcanism in the Selitkan zone of the Khingan-Okhotsk volcano-plutonic belt (the Far East of Russia)]. Doklady Akademii Nauk. 2008. V.418. Iss.2. P.221–225. (in Russian)
XVII. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. A geochemical classification for granitic rocks J. Petrology. 2001. V. 42. P. 2033–2048.

XVIII. Guo F., Fan W., Gao X., Li Ch., Miao L., Zhao L., Li H. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and Phanerozoic crustal growth. Lithos. 120. 2010. Pp. 563–578.
XIX. Hoffman A.W. Mantle geochemistry: the message from oceanic volcanism. Nature. 1997. V. 385. P. 219–229.
XX. Khanchuk A.I. (ed.) Geodinamika, magmatizm i metallogeniya Vostoka Rossii [Geodynamics, magmatism and metallogeny of Eastern Russia]. Vladivostok: Dalnauka. 2006. 979 p. (in Russian)
XXI. Khanchuk A.I., Ivanov V.V. Mezo-kaynozoyskiye geodinamicheskiye obstanovki i zolotoye orudeneniye Dal’nego Vostoka [Meso-Cenozoic geodynamic conditions and gold mineralization of the Far East]. Geologiya i Geofizika. 1999. V.40. Iss.11. P.1635–1645. (in Russian)
XXII. Le Bas M., Le Maitre R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total-silica diagram. J. Petrology. 1986. V. 27. P. 745–750.
XXIII. Lebedev Ye.L. Stratigrafiya nizhnemelovykh otlozheniy Toromskogo progiba (Zapadnoye Priokhot’ye) [Stratigraphy of the Lower Cretaceous deposits of the Torom trough (West Near-Okhotsk Sea district]. Sovetskaya. Geologiya. 1969. V. 8. P. 27–36. (in Russian)
XXIV. Martynyuk M.V., Ryamov S.A., Kondratyeva V.A. Obyasnitel’naya zapiska k skheme raschleneniya i korrelyatsii magmaticheskikh kompleksov Khabarovskogo kraya i Amurskoy oblasti [Explanatory note to the scheme of dismemberment and correlation of magmatic complexes of Khabarovsk Krai and Amur Oblast]. Khabarovsk: TSTP PGO Dalgeologiya, 1990. 215 p. (in Russian)
XXV. Maruyama, S., Seno,T. Orogeny and relative plate motions: example of the Japanese Islands. Tectonophysics. 127. 1986. P. 305–329.
XXVI. Murphy J.B. Igneous Rock Associations 8. Arc Magmatism II: Geochemical and Isotopic Characteristics Geoscience Canada. 2007. V. 34. № 1. P. 7–35.
XXVII. Natalyin B.A., For M. Geodinamika vostochnoy okrainy Azii v mezozoye [Geodynamics of the eastern margin of Asia in the Mesozoic]. Tikhookeanskaya Geologiya. 1991. V.6. P.3–20. (in Russian)
XXVIII. Pearce J. A., Harris N. B., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984. V. 25. P. 956–983.

XXIX. Puzankov Yu.M., Volynets O.N., Seliverstov V.A. et al. Geokhimicheskaya tipizatsiya magmaticheskikh i metamorficheskikh porod Kamchatki [Geochemical typification of magmatic and metamorphic rocks of Kamchatka]. Novosibirsk: Institute of Geology and Geophysics of Siberian Branch of the USSR Academy of Sciences, 1990. 259 p. (in Russian)
XXX. Rudnick R.L., Gao S. The Composition of the Continental Crust. Oxford: Elsevier/Pergamon, 2003. V. 3. P. 1–64.
XXXI. Shcheglov A.D. (ed.) Vulkanicheskiye poyasa vostoka Azii. Geologiya i metallogeniya [Volcanic belts of East Asia. Geology and metallogeny]. Moscow: Nauka, 1984. 503 p. (in Russian)
XXXII. Sorokin A.A., Kotov A.B., Kovach V.P., Ponomarchuk V.A., Savatenkov V.M. Istochniki pozdnemezooyskikh magmaticheskikh assotsiatsiy Severo-Vostochnoy chasti Amurskogo mikrokontinenta [Sources of Late Mesozoic magmatic associations of the North-Eastern part of the Amur microcontinent]. Petrologiya. 2014. V.22. Iss.1. P.72–84. (in Russian)
XXXIII. Sorokin A.A., Sorokin A.P., Ponomarchuk V.A., Travin A.V. Vozrast i geokhimicheskiye osobennosti vulkanicheskikh porod vostochnogo flanga Umlekano-Ogodzhinskogo vulkanoplutonicheskogo poyasa (Priamurye) [The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan–Ogodzha volcanoplutonic belt (Amur region)]. Geologiya i Geofizika. 2010. V.51. Iss.4. P.473–485. (in Russian)
XXXIV. Sorokin A.A., Sorokin A.P., Salnikova Ye.B., Derbeko I.M., Kotov A.B., Yakovleva S.Z. Geokhronologiya riolitov unerikanskogo kompleksa vostochnogo flanga Umlekano-Ogodzhinskogo poyasa (Dalniy Vostok) [Geochronology of rhyolites of the Unerikan complex of the eastern flank of the Umlekan-Ogodzha belt (Russian Far East). Proceedings of the III Russian Conference on Isotope Geochronology. June 6-8, 2006. Moscow. V.2. P.311–314. (in Russian)
XXXV. Sun S.S., McDonough W.F. In: Magmatism in the oceanic basins (Saunders A.D. & Norry M.J. Eds). Geol. Soc. Spec. Publ. № 42. 1989. P. 313–345.
XXXVI. Velikoslavinsy S.D., Glebovitskiy V.A. Novaya diskriminantnaya diagramma dlya klassifikatsii ostrovoduzhnykh i kontinentalnykh bazaltov na osnove petrokhimichskikh dannykh [A new discriminant diagram for the classification of island-arc and continental basalts based on petrochemical data]. Doklady Akademii Nauk. 2005. V. 401. Iss. 2. P. 213–216. (in Russian)

XXXVII. Weaver B.L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints Earth Planet. Sci. Lett. 1991. V. 104. Iss. 2-4. P. 381–397.
XXXVIII. Zindler A., Haris S. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 1986. V.14. P. 493–571.
XXXIX. Zubkov V.F. State Geological Map of the USSR 1: 200 000. Sheet N-53-XXVI. Moscow: MinGeo, 1975. 116 p.

View | Download

RUSSIAN TECHNOLOGIES OF THE DIGITAL REVOLUTION IN INDUSTRY.PART 1.METHODS AND MEANS OF DIGITAL MANAGEMENT

Authors:

Georgy B. Evgenev,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00022

Abstract:

The Digital revolution in industry is supposed to cover all stages of the product life cycle, including product design and planning of manufacturing processes. At these stages, goods and processes are not accomplished as real things but formed as models in the virtual world. Therefore, the Internet of Things concept, the basis of the “Industry 4.0” project, is not sufficient to conduct a full-scale digital revolution. This paper aims to develop an integrated structure of the Internet of Knowledge, which is used in the virtual world, and the Internet of Things. The key methodology to examine this problem is the methodology of artificial intelligence. It provides for comprehensive consideration of the problems that arise at all stages of the life cycle of engineering products. The Internet of Knowledge has an ontological basis and includes meta-ontology, which comprisesthe ontology of objects, the ontology of tasks and the ontology of optimization. The Digital Revolution should give the knowledge carriers without programming skills an opportunity to enter pieces of information into the computer without intermediaries. The materials of the paper are of practical value for the creation of integrated automation systems of engineering products design and production.

Keywords:

Industry 4.0,manufacturing, intelligent systems,computer-aided process planning,computer-aided manufacturing,manufacturing execution system,

Refference:

I. Chetvertaya promyshlennaya revolutsiya [The Fourth Industrial revolution] www.tadviser.ru [in Russian]
II. Digital Factory 4.0 | Industry 4.0 solution | antsolutions.eu‎ //www.antsolutions.eu
III. Evgenev G.B., ChastukhinM.V.Integratsiyasistemproektirovaniya i program irovaniyatekhnologicheskikhprotsessovobrabotki [Integration of design and programming systems for processing processes]. Inzhenernyivestnik, 2015, 10:507–513. URL: http://engsi.ru/doc/816454.html (access date 10.03.2018). [in Russian]
IV. Evgenev G.B. Intellektual’nyesistemyproektirovaniya [Intelligent Design Systems]. Moscow. Bauman MGTU Publishing house, 2012, 420 pp.[in Russian]
V. Evgenev G.B. (ed.). Osnovyavtomatizatsiitekhnologicheskikhprotsessov i proizvodstv. T. 1: Informatsionnyemodeli [Fundamentals of technological processes automation and production. Vol. 1: Information Models]. Moscow, Bauman MGTU Publishing house, 2015. 441 pp. [in Russian]
VI. Evgenev G.B. (ed.). Osnovyavtomatizatsiitekhnologicheskikhprotsessov i proizvodstv. T. 2: Metodyproyektirovaniya i upravlemiya [Fundamentals of technological processes automation and production. Vol. 2: Methods of design and management]. Moscow, Bauman MGTU Publishing house, 2015. 479 pp. [in Russian]
VII. Evgenev G.B., Kokorev A.A., Grishin N.S. Metodavtomatizatsiiproektirovaniya i normirovaniyamekhanicheskoyobrabotkinaosnovestandartov ISO [The method of automation of design and normalization of machining based on ISO standards]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2014, 4:55- 66. [in Russian]
VIII. Evgenev G.B., Kokorev A.A., Pirimyashkin M.V. Intellektual’nyesistemypoluavtomaticheskogoproektirovaniya i bystrogoprototipirovaniyaizdeliymashinostroeniya [Intellegent systems for semi-automatic design and rapid prototyping of engineering products].Evraziyskiy Soyuz Uchenykh, 2015, 9(18):19–25. [in Russian]
IX. Evgenev G.B., Kryukov S.S., Kuzmin B.V., Stises A.G. Integrirovannayasistemaavtomatizatsiiproektirovaniyatekhnologicheskikhprotsessov i operativnogoupravleniyaproizvodstvom [An integrated system for automation of design of technological processes and production operational management]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie., 2015, 4:38- 49 [in Russian]
X. Evgenev G.B., Kuzmin B.V. Metodgeneratsiibazznaniystrukturnogosintezamarshrutnykhtekhnologicheskikhprotsessov [A method of generating knowledge bases for the structural synthesis of routing technological processes]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2013, 5:60- 67 [in Russian]
XI. Evgenev G.B., Kuzmin B.V., Rubakhina V.I. Metody i sredstvaupravleniyazhiznennymtsiklomizdeliymashinostroeniya [Methods and tools of life cycle management of engineering products]. Sistemyupravleniya, svyazi i bezopasnosti, 2015, 4:198-216 [in Russian]

XII. Evgenev G.B. Ontologicheskayametodologiyasozdaniyaintellektual’nykhsistem v mashinostroenii [Ontological methodology for the creation of intelligent systems in engineering]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2014, 6:79-86 [in Russian]
XIII. EvgenevG.B.Sinergeticheskayametodologiyaintegratsiiznaniy. [Synergetic methodology of knowledge integration]. Informatsionnyetekhnologii, 2011, 1:15–23. [inRussian]
XIV. Evgenev G.B. SprutExPro – sredstvogeneratsiimnogoagentnykhsistemproektirovaniya v mashinostroenii [SprutExPro – a tool for generating multi-agent design systems in engineering]. Part 1. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2017, 6:66-77 [in Russian]
XV. Evgenev G.B. SprutExPro – sredstvogeneratsiimnogoagentnykhsistemproektirovaniya v mashinostroenii [SprutExPro – a tool for generating multi-agent design systems in engineering]. Part 2. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie., №7, 2017, с.60-71[in Russian]
XVI. Gavrilova T.A., Khoroshevsky V.F. Basyznaniyintellektualnykh system [Knowledge bases of intelligent systems]. St. Petersburg, Piter, 2000, 384 pp. [in Russian]
XVII. Industry 4.0: the fourth industrial revolution – guide to Industrie 4.0. URL: https://www.i-scoop.eu>industry-4-0(access date 28.12.2017).
XVIII. Industry 4.0: the Future of Smart Manufacturing – Praimhttps://www.praim.com › Article
XIX. Industry 4.0: The Journey Toward Perfect Production – Forbeshttps://www.forbes.com.
XX. Industry 4.0 – the Nine Technologies Transforming Industrial Productionhttps://www.bcg.com/…/embracing-industry-4.0-rediscoveri. (access date: 03.01.2017).
XXI. Rubakhina V.I. Sprut-Tekhnologiya: otzhelaniy k voploshcheniyu. [Sprut-Technology: from desires to implementation]. RitmMashinostroeniya, 2013, 3(81):23-25.[in Russian]
XXII. The SPRUT Center. SPRUT Technology. URL: www.csprut.ru (access date 15.01.2018).[in Russian]
XXIII. Siemens | Industrie 4.0‎//www.siemens.com/digital/enterprise‎

XXIV. Smirnov V.V. Development of technological processes in SPRUT-TP system: methodological recommendations for students’ independent work in the training field 151900.62 “Design and technological support of machine-building productions” in the discipline “CAPP”. / Smirnov V.V. 2014. Polzunov Altai State Technical University. Biysk: Altai STU Publishing house, 24 pp. [in Russian]
XXV. SPRUT-Technology: effective CAD / CAM / CAE tools [in Russian]

View | Download

RUSSIAN TECHNOLOGIES OF THE DIGITAL REVOLUTION IN INDUSTRY.PART 2.DESIGNING AND PROGRAMMING TECHNOLOGICAL PROCESSES

Authors:

Georgy B. Evgenev,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00023

Abstract:

The Digital revolution in industry is supposed to cover all stages of the product life cycle, including design and programming of manufacturing processes. However, at these stages, things and processes are not yet accomplished in reality; they areonly formed as models in the virtual world with the help of the Internet of Knowledge. Therefore, the Internet of Things concept, the basis of the “Industry 4.0” project, is not enough to conduct a full-scale digital revolution.The concept treats the stage prior to production quite meagerly. This paper aims to develop astructure of the Internet of Knowledge as applied to design and programming of technological processes in digital production. The key methodology to examine this problem is the methodology of artificial intelligence. It provides for comprehensive consideration of the problems that arise at all stages of the life cycle of engineering products. The Internet of Knowledge has an ontological basis and includes meta-ontology, which comprises the ontology of objects, the ontology of tasks and the ontology of optimization. The Digital Revolution should give the knowledge carriers without programming skills an opportunity to enter pieces of information into the computer without intermediaries. The materials of the paper are of practical value for the creation of integrated automation systems for thedesign and programming of engineering processes.

Keywords:

Industry 4.0,, digital manufacturing, intelligent systems,computer-aided ,process planning,computer-aided manufacturing,manufacturing execution system,

Refference:

I. Chetvertaya promyshlennaya revolutsiya [The Fourth Industrial revolution] www.tadviser.ru [in Russian]
II. Classifier Models in Intelligent CAPP Systems | SpringerLinkhttps://link.springer.com/chapter/10…/978-3-642-00563-3_3…
III. Digital Factory 4.0 | Industry 4.0 solution | antsolutions.eu‎ //www.antsolutions.eu
IV. Evgenev G.B, KharadzhievA.Kh. (ed.) Programmirovanieobrabotki ns stankakh s ChPU [Programming of processing on CNC machines]. Vol. 1. Moscow. Bauman MGTU Publishing house, 2018, 328 pp.[in Russian]
V. Evgenev G.B., KharadzhievA.Kh. (ed.) Programmirovanieobrabotki ns stankakh s ChPU [Programming of processing on CNC machines]. Vol. 2. Moscow. Bauman MGTU Publishing house, 2018, 360 pp.[in Russian]
VI. Evgenev G.B., Kokorev A.A., Grishin N.S. Metodavtomatizatsiiproektirovaniya i normirovaniyamekhanicheskoyobrabotkinaosnovestandartov ISO [The method of automation of design and normalization of machining based on ISO standards]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2014, 4:55- 66. [in Russian]
VII. Evgenev G.B., Kryukov S.S., Chastukhin M.V. Obrabatyvayuschierobototekhnologicheskiekompleksy v maschinostroyenii [Processing robotic technology complexes in machine building]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2017, 5:60-71 [in Russian]
VIII. Evgenev G.B., Kuzmin B.V. Metodgeneratsiibazznaniystrukturnogosintezamarshrutnykhtekhnologicheskikhprotsessov [A method of generating knowledge bases for the structural synthesis of routing technological processes]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2013, 5:60- 67 [in Russian]
IX. Evgenev G.B. Intellektual’nyesistemyproektirovaniya [Intelligent Design Systems]. Moscow. Bauman MGTU Publishing house, 2012, 420 pp.[in Russian]
X. Evgenev G.B. Ontologicheskayametodologiyasozdaniyaintellectualnykhsistem v mashinostroyenii [Ontological methodology for creating intelligent systems in machine building]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2014, 6:79-86 [in Russian]
XI. Evgenev G.B. Ontologicheskayametodologiyasozdaniyaintellektual’nykhsistem v mashinostroenii [Ontological methodology for the creation of intelligent systems in engineering]. Izvestiyavysshikhuchebnykhzavedeniy. Mashinostroenie, 2014, 6:79-86 [in Russian]
XII. Evgenev G.B. (ed.). Osnovyavtomatizatsiitekhnologicheskikhprotsessov i proizvodstv. T. 1: Informatsionnyemodeli [Fundamentals of technological processes automation and production. Vol. 1: Information Models]. Moscow, Bauman MGTU Publishing house, 2015. 441 pp. [in Russian]
XIII. Evgenev G.B. (ed.). Osnovyavtomatizatsiitekhnologicheskikhprotsessov i proizvodstv. T. 2: Metodyproyektirovaniya i upravlemiya [Fundamentals of technological processes automation and production. Vol. 2: Methods of design and management]. Moscow, Bauman MGTU Publishing house, 2015. 479 pp. [in Russian]
XIV. Intelligent Process Planning: Intelligent CAPP: Business … – IGI Globalhttps://www.igi-global.com/chapter/intelligent…/42629
XV. Industry 4.0: the fourth industrial revolution – guide to Industrie 4.0. URL: https://www.i-scoop.eu>industry-4-0(access date 28.12.2017).
XVI. Industry 4.0: the Future of Smart Manufacturing – Praimhttps://www.praim.com › Article
XVII. Industry 4.0: The Journey Toward Perfect Production – Forbeshttps://www.forbes.com.
XVIII. Industry 4.0 – the Nine Technologies Transforming Industrial Productionhttps://www.bcg.com/…/embracing-industry-4.0-rediscoveri. (access date: 03.01.2017).
XIX. Key Technology Research on Intelligent CAPP System of Automatic …https://www.scientific.net/AMM.48-49.649
XX. Kraskovskiy D.M. Obzorsostoyaniyarynkasistem PLM/TDM/PDM/Workflow [Market overview of PLM/TDM/PDM/Workflow systems]. SAPR i grafika, 2004, 12 [in Russian]
XXI. Manufacturing Knowledge Modeling Based on Artificial Neural …https://www.scientific.net/AMM.127.310
XXII. Rubakhina V.I. Sprut-Tekhnologiya: otzhelaniy k voploshcheniyu. [Sprut-Technology: from desires to implementation]. RitmMashinostroeniya, 2013, 3(81):23-25.[in Russian]
XXIII. Siemens.Industrie 4.0‎//www.siemens.com/digital/enterprise‎
XXIV. Smirnov V.V. Development of technological processes in SPRUT-TP system: methodological recommendations for students’ independent work in the training field 151900.62 “Design and technological support of machine-building productions” in the discipline “CAPP”. / Smirnov V.V. 2014. Polzunov Altai State Technical University. Biysk: Altai STU Publishing house, 24 pp. [in Russian]
XXV. The SPRUT Center. SPRUT Technology. URL: www.csprut.ru (access date 15.01.2018). [in Russian]
XXVI. www.siemens.com/plm

XXVII. www.sprut.ru

View | Download

PHASE CHANGES OF WATER AS A BASIS FOR NATURAL WATER-EXCHANGE CYCLES

Authors:

Viktor V.Shepelev,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00024

Abstract:

Water draws attention of researchers due to its ubiquity, the role it plays in natural, technological, social and other processes, and the not ultimately comprehended dynamics of its properties, structure, composition, resources, etc. The author, having systematized the literature data and the results of own research, analyzes the role of phase changes and interphase transfers of natural waters in forming water-exchange cycles.It is argued that natural waters are characterized by the effect of phases mixing, determining the unity of all natural waters and high intensity of interphase transfer.Based on this methodological approach, the author specified the scheme of climatic (hydrological) circulation of natural waters. Besides the well-known atmospheric (atmogenic)cycle, the author identified cryohydrogenic, atmolithogenic, glaciogenic and cryolithogenic cycles, calculated the amountof water annually participating in these cycles and the intensity of water exchange in them. This scheme will promote a more focused research of water resources and various water exchange cycles

Keywords:

Phase change of water,interphase water transfer,water-exchange cycles,climatic cycle of water,

Refference:

I. Abramova, L.S. (ed.) (1968). Krugovorotvody [Circulation of water]. Moscow: Znaniye.

II. Alpatyev, A.M. (1969). Vlagooboroty v prirode [Water exchanges in nature]. Leningrad: Gidrometeoizdat.

III. Andreev, I.L. (2017). Vodniynanofundamentzhizniizdorovyacheloveka [Water nano-basement of the life and health of a human]. Bulletin of the Russian Academy of Sciences, vol. 87, #2. pp. 145-153.

IV. Antonchenko,V.E., Davydov,A.S., Ilyin,V.V. (1991). Osnovyfizikivody [Basics of the physics of water]. Kiev: Naukovadumka.

V. Barri, R.G. (1969). Water, Earth and Man. Leningrad.

VI. Baumgartnes, A., Reichel, E. (1972). World WaterBalance. Gentbrugge; Paris; Geneve: IASH-UNESCO-WMO.

VII. Davis, Stanly N., De Wiest, Roger J.M. (1964). Voda – zerkalonauki [Water as the mirror of science]. Leningrad: Gidrometeoizdat.

VIII. Davis, Stanly N., De Wiest, Roger J.M. (1966). Hydrogeology. NewYork,London, Sydney.
IX. Derpgolts, V.F. (1974). Mirvody [World of water]. Leningrad: Nedra.

X. Deryagin, B.V., Churayev, N.V., Ovcharenko, F.R.,et al. (1989). Voda v dispersnykhsistemakh [Water in disperse systems]. Moscow: Khimiya.

XI. Drozdov, O.A., Grigoryeva, A.S. (1963). Vlagooborot v atmosfere [Water circulation in the atmosphere]. Leningrad: Gidrometeoizdat.

XII. Ivanov, A.V. (1993). Glyatsiogenniykrugovorotveshchestv [Glaciological circulation of substances]. Khabarovsk: Kn. izd-vo.

XIII. Kalinin, G.P. (1975).Globalniyvodoobmen [Global water exchange]. Moscow: Nauka.pp. 3-12.

XIV. Keller, R. (1965). Vodaivodniybalanssushi [Water and water balance of land]. Moscow: Progress.

XV. Khod’kov, A.E., Valukonis, G.Yu. (1968).Formirovaniyeigeologicheskayarol’ podzemnykhvod [Formation

XVI. nd geological role of ground waters]. Leningrad: Izd-voLGU.

XVII. L’vovich,M.I. (1974).Miroviyevodniyeresursyiikhbudushcheye [Global water resources and their future]. Moscow: Mysl.

XVIII. Lichkov, B.L. (1958). Formirovaniyepodzemnykhvodiedinstvoprirodnykhvod [Formation of ground waters and unity of natural waters].Works of the Laboratory for hydrogeological issues,vol. XVI. Moscow: Izd-voANSSSR.pp. 27-33.

XIX. Lichkov, B.L. (1962).OznacheniiteoriiZemliineobkhodimostieyosozdaniya [On the significance of the theory of the Earth and necessity to create it]. Geographical collection, vol. 15. Leningrad: Izd-voANSSSR.pp. 7-28.

XX. MirovoyvodniybalansivodnyeresursyZemli [Global water balance and water resources of the Earth] (1974). Leningrad: Gidrometeoizdat.

XXI. Pavlov, A.V. (1977). GeologicheskiykrugovorotvodynaZemle [Geological circulation of water on the Earth]. Leningrad: Nedra.

XXII. Priklonskiy, V.A. (1958).Osnovniyevoprosyeksperimentalnykhissledovaniypriizucheniiformirovaniyapodzemnykhvod[Key issues of experimental research when studying the formation of ground waters].Works of the Laboratory for hydrogeological issues,vol. XVI. Moscow: Izd-voANSSSR.pp. 86-105.’

XXIII. Shamov,V.V. (2006).Vlagooborotnasushe. Sistemno-metodologicheskiyifiziko-geometricheskiyanaliz [Theterrestial water cycle. Systemic-methodological and physical-geometrical analysis]. Vladivostok: Dalnauka.

XXIV. Shepelev,V.V. (1996). Printsipedinstvaprirodnykhvodineobkhodimost ego uchetaprigeoekologicheskikhissledovaniyakh [Principle of the unity of natural waters and the necessity to take it into account during geoecological research]. Geoecology, #1. pp. 41-50.

XXV. Shepelev, V.V. (2001). O krugovoroteprirodnykhvod [On circulation of natural waters]. Water resources, vol. 28, # 4. pp. 418-423.

XXVI. Shepelev, V.V. (2008). O skhemekrugovorotaprirodnykhvod [On the scheme of circulation of natural waters].Reports of the 6th All-Russia hydrological assembly. Section 3, part I. Moscow: MeteoagenstvoRosgidrometa.pp. 72-76.

XXVII. Shepelev, V.V. (2011). Nadmerzlotniyevodykriolitozony[Suprapermafrostwatersinthecryolithozone]. Novosibirsk: Akademicheskoyeizdatelstvo“Geo”.

XXVIII. Shvartsev, S.L. (1980).Krugovorotvody v nedrakhZemli[Water circulation in the depth of the Earth]. In: Osnovygidrogeologii. Obshchajagidrogeologiya [Fundamentals of hydrogeology. General hydrogeology]. Novosibirsk: Nauka.pp. 81-99.

XXIX. Shvartsev, S.L. (2018). Sozidatelnayafunktsiyavody v okruzhayushchemmire [Constructive function of water in the environment]. In: PodzemnyevodyVostokaRossii: materialyVserossiyskogosoveshhaniya [Ground waters of the Russian East: materials of the All-Russia conference].Novosibirsk: IPCNGU. pp. 42-46.

XXX. Todd, D.K.(ed.)(1970). The Waters Encyclopedia. Washington.

XXXI. Tsytovich, N.A. (1945).Kteoriiravnovesnogosostoyaniyavody v merzlykhgruntakh [On the theory of equilibrium state of water in frozen ground]. Newsletter of the USSR Academy of Sciences, “Geography” series, vol.IX, # 5-6. pp. 493-502.

XXXII. Vernadskiy, V.I. (1960). Izbranniyesochineniya [Selected works]. Vol. IV, book 2. Moscow: Izd-voANSSSR.

XXXIII. Voskresenskiy, K.P. (1974). KrugovorotvodynaZemle [Water circulation on the Earth]. In:MirovoyvodniybalansivodniyeresursyZemli [Global water balance and water resources on the Earth]. Leningrad: Gidrometeoizdat.pp. 104-116.

XXXIV. Water resources and WMO (1986). Geneve: WMO.

XXXV. Zverev, V.P. (1993). Kolichestvennayastrukturaglobalnykhmassopotokovpodzemnykhvod [Quantitative structure of the global mass flows of ground waters]. Reports of the Russian Academy of Sciences, vol. 330, #4. pp. 480-483.

View | Download

SPECIFICS OF TRADITIONAL NUTRITION OF THE PEOPLES OF THE NORTH

Authors:

Izabella Z. Borisova,Aitalina A. Borisova,Antonina A. Vinokurova,Dekabrina M. Vinokurova,Uliana M. Lebedeva,Isabel Bianquis,MilanaN. Petrova,Alena M. Dokhunaeva,Dyulustan V. Borisov,Vasily V. Illarionov,Tuyara V. Illarionova,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00025

Abstract:

The article discusses the studies dealing with history and current state of studyingfood culture of thepeople of Yakutia. The root of the problem is that food culture is underexplored in view of transformation and applied relevance in modern Yakutia. Objective: our study is aimed at the examination of historic base and generalization of the current state of the issue related to traditional nutrition and its role in modern Yakutia. Results obtained in the study will form the basis for making northern nutrition and interdisciplinary studies popular both in theory and in practice. The study of northern nutrition as part of cultural heritage is a new trend of cultural anthropology. In Yakutia, the issue of nutrition as cultural heritage has just been turning into the object of scientific analysis. The article deals with the basic landmarks of northern nutrition studies. Principle studies dealing with the nutritional issue are reviewed; a brief journey is made into the most developed trends of nutrition culture of the peoples of the North.

Keywords:

Northern nutrition,specifics,scientific study,nutrition culture,mutual enrichment,multilayeredness,

Refference:

I. AlekseevV. L. Forgotten recipes of ancestors. Yakutsk:Bichik Publ. House, 2001

II. BianquisIsabelle, BorissovaIsabella.Urban Melting Pot: Food Heritage in Yakutia (p. 169) Urban Foodways and Communication Ethnographic Studies in intangible cultural Food heritages around the world. Edited by Casey Man Kong Lum and Marc de Ferriere le Vayer, USA, 2016.

III. BorissovaI. «La cuisine de la survie» au cours de la Grande Guerre Nationale de 1941-45. sur le territoire de la Yakoutie//Материалывтороймеждународнойконференции «Историяикультурапитания»/ Second International Conference on Food History and Cultures 26-27 May 2016 – Tours (France)/26-27 mai 2016 – Tours (France). Тур, 2016

IV. BorissovaI. Traditions alimentaires des Yakoutes et l’image de l’alimentation en langue International Conference «Chinese Food Culture in Europe; French Food in Asia» whichwilltake place from 12 till 15.10-2015 in Tours, Тур, 2016

V. Borissova I. Z. The origins and development of the Yakutsk national cuisine, cultural heritage of the Sakha people/Materails of the II International Symposium. The history of food and nutrition tradition of nations around the world. Issue II (collection of articles). M.: MU, Center to study cultural interrelation, 2016. ISBN 978-5-94800-035-0

VI. BorissovaI. Z., BorissovaA. A., Bianquis I. Ethnic peculiarities of nutrition of the Sakha people. Globalization and integration of traditional and innovation science in modern world. Direction: Cultorology. Collection of scientific articles based on the results of an international research conference, September 23-24, 2016. I. Z. Borissova, A. A. Borissova, I. Bianquis. Saint-Petersburg: CultInformPress Publish. House, 2016.

VII. Dairy food of the Yakut. Electronic data. URL access: www.yakutskhistory.net/…сомоготто/молочная-пища-якутов/(date of referral 30.07.2018).

VIII. etnic.ru/wow/traditsionnaya-pishcha-korennykh-narodov-severa.htm (date of referral 30.07.2018).

IX. History and culture of the Evens. Historic and ethnographic reviewes. Saint-Petersburg, 1997.

X. KhudyakovI. A. Brief description of the Verkhoyansk district. Leningrad, 1969.

XI. MaakR. K.Vilyusk district of Yakutsk region. Part III, Saint-Petersburg, 1887.

XII. Middendorg A. F. Encyclopedia of Yakutia. M, 2000; 1: 109-1027.

XIII. MiddendorfA. F. Journey to the north and east of Siberia, p. II. Saint-Petersburg, 1878.

XIV. News of the Yakutsk county from Peter Skobeltsyn and collegues. PFA RAS. F.Z. Op. 10 No. 125 Ll. 7-7 ob.

XV. Nikolaev (Samogotto) S. I. Food of the Yakut (in view of neighbouring cultures), Yakutsk: Yakutsk region, 2009.

XVI. Savvin A. A. Yakutsk kumis (‘Collection of materials on ethnography of the Yakut’, Yakutsk, 1948, p. 117 – 138).

XVII. SeroshevskyV. L. The Yakut. V. 1, Saint-Petersburg, 1896.

XVIII. ShimanskyA. Food of the Yakut. Saint-Petersburg, 1886.

XIX. TarbakhovI. I. Эностуолунсахалыыастара. Yakutsk, 1993.

XX. TyrylgynM. A. The origins of phenomenal vital capacity of the Sakha people. M.A. Tyrylgyn. Yakutsk: Bichik, 2000.

XXI. VladimirovK. N., ReshetnikovI. S., Robbek V. A. Scientific aspects of northern deer farming revival. Yakutsk: Yakutsk Research Center, Siberian Dpt., RAS Publish. House, 2005.

View | Download

ESTIMATING ECONOMIC EFFECTIVENESS OF USING AUTOMATED TRADING SYSTEMS IN THE FOREIGN EXCHANGE MARKET

Authors:

Tatyana N. Batova,Boris A. Varlamov,Yelena A. Pavlova,Nataliia A. Kasatkina,Marina N. Titova,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00026

Abstract:

Since share of algorithmic trading in the global foreign exchange-market increases, justifying an appropriateness and evaluation of economic effectiveness of using a particular automated trading system is becoming increasingly relevant. Considering that automated trading system is a full-featured software, methods for estimating effectiveness of information technologies shall be utilized to identify effectiveness of using thereof. Thus, in this work the methods for estimating effectiveness of information technologies have been analyzed, without regard to the subject area. The following groups of methods have been considered: cost-based methods; methods for estimating a direct result; methods on the basis of estimating ideality of a process; qualimetric methods. It should be noted that there are no methods ready for practical use. The primary challenge here is in choosing parameters and estimating the results of introducing information technologies. With no any uniform approach, the paper suggests that one of methods for evaluating a direct result, namely, Economic value sourceestimation method should be used to estimate effectiveness of automated trading systems. In a general way, this method implies that the four parameters are applied: an increase in income, growth in labor productivity, reduction ofin-service time, minimization of risks. This method cannot be said to be suitable for obtaining an objective and accurate assessment of effectiveness of using automated trading system. Therefore, when adjustment to the particular case and certain conditions associated with trading in the foreign exchange market, is made, the benefits shall be evaluated that accrue from automated trading system for trade expert as compared to manual trading within one time period and one trading strategy. The paper suggests that the conclusions about effectiveness of automated trading system should be made by the following parameters: an increase in trade expert’s income, an increase in the number of transactions made, acceleration of trading process, minimization of risks. A comparison is made between trading results of trade expert and P.Scalp automated trading system after having employed one trading strategy over 4 months. Computations have shown cost-effectiveness of using automated trading system by all parameters: income of automated trading system is higher by 23%; automated trading system made 1.5 times more transactions than a trade expert made; automated trading system 19 days earlier reached the same income as that earned by a trade expert; use ofautomated trading system reduces the risks of losing proceeds more than twice. The practical value of the carried out study lies in justifying an appropriateness of using parameters suggested in the paper to evaluate economic effectiveness of automated trading systems within Economic value source estimation method. To correctly choose effectiveness parameters is essentially equivalent to a proper statement of a problem. It enables to identify an area of feasible solutions

Keywords:

Algorithmic trading,automated trading system,economic effectiveness of information technologies,Economic value source estimation,

Refference:

I. Algorithmic trading in financial markets. URL: http://gasinv.ru/algoritmicheskaya-torgovlya-na-finansovykh-rynkakh

II. Anisiforov A.B., Anisiforova L.O. Methodologies for evaluating effectiveness of information systems and information technologies in business. St. Petersburg, 2014. URL: http://elib.spbstu.ru/dl/2/3876.pdf/download/3876.pdf

III. Approaches and methods for estimating effectiveness of using information URL: studfiles.net / Accessibility mode: https://revolution.allbest.ru/programming/d00520516.html

IV. Batova T.N., Khomkov A.V. Evaluation of appropriateness of using automated trade systems in the foreign exchange market // «Economics and Enterprise». 2016; 12 (2).

V. Batova T.N., Sizova T.M., Khomkov A.V., Evaluation of effectiveness of automated trading systems on the basis of nonparametric methods//Economics and environmental management . 2017; 4(31).

VI. ENERGY OF YOUTH FOR RUSSIAN ECONOMY 13th International conference – Publishing house of Tomsk Polytechnic University, 2012. URL: http://www.lib.tpu.ru/fulltext/c/2012/C23/V1/C23_V1.pdf

VII. Estimation of effectiveness of information systems. http://docplayer.ruURL:/50357324-Ocenka-effektivnosti-informacionnyh-sistem-ponyatie-effektivnosti-sovremennye-metody-ocenki.html

VIII. Fedotova G.V., BotnarS.Yu. [Online resource]. URL: https://cyberleninka.ru/article/n/osobennosti-algoritmicheskoy-torgovli-na-fondovom-rynke

IX. FOREX Systems – FOREX trading systems. Classification of forex trading systems. URL:http://forexsystems.vx5.ru/index.php?start=3

X. Free and ready-made trading robots are dangerous for investors. URL: http://www.wealthinvestor.ru/articles/fondovyy_rynok/besplatnye_i_gotovye_torgovye_roboty_opasny_dlya_investorov

XI. Free web-service to analyze and publish trading results. URL: http://www.myfxbook.com/

XII. Independent rating of trading robots. URL: http://www.expertadvisorsforex

XIII. INTERFAX-100. Rating of forex-brokers in Russia, 2015. URL: http://www.finmarket.ru/database/rankings/?rt=24

XIV. Kryukov P.A. Trade operations on Forex exchange market as financial investments // Problems of accounting and finances. 2014; 3 (15): 51-55.

XV. Mathematical statistics. Spearman’s rank correlation coefficient. URL: http://statpsy.ru/spearman/correlation-srearman/

XVI. Morozov I.V., Fatkhullin P.P. FOREX: From simple to complicated. М.: Alpina Publisher, 2015.

XVII. Models for computing Total cost of ownership (TCO). URL:http://cdn.scipeople.com/materials/3700/Семенихина.pdf

XVIII. MyFin – financial portal, «forex» articles. Advantages and disadvantages of FOREX robots. URL: http://myfin.by/stati/view/1314-dostoinstva-i -nedostatki-robotov-foreks-fxlin

XIX. Portal for development of software and value-added services: providing services, including software, to brokers, traders, and developers: URL: http://www.fxblue.com/
XX. Portal for testing trading robots (experts and advisers). URL: http://www.bestforexrobots.net.

XXI. Portal for comparing results of trading systems’ effectiveness. URL: http://www.reviewforexrobots.com/top-forex-robots.html

XXII. SEC-required report on routing of customer order. URL: https://russellinvestments.com/-/media/files/us/legal/sec-606-reporting-06302017.pdf?la=en

XXIII. Teaching forex – portal, a complete guide to Algotrading on FOREX. URL: http://tradelikeapro.ru/polnyiy-gayd-po-algotreydingu/.

XXIV. Technical Analysis for Forex trading with the examples on MQL4 [Online resource]. URL: http://www.studmed.ru/view/tehnicheskiy-analiz-dlya-torgovli-na-foreks-s-primerami-na-mql4_a0d7592.html/#1

XXV. Volodin S.N. Effectiveness of methods for technical analysis of priority operations on stock market. М.: National Research University “Higher School of Economics”, 2013. URL: https://www.hse.ru/data/xf/2013/04/12/1293861790/volodin.pdf

XXVI. Zubakov A.P., Kiseleva E.A. Development of robot for efficient trading on forex market. URL: https://cyberleninka.ru/article/n/razrabotka-robota-dlya-effektivnoy-torgovli-na-rynke-foreks

View | Download

THE STUDY OF THE CONTENT OF RESIDUES OF “BATRIDER” INSECTICIDE IN THE HARVEST OF HARVEST OF CHERRY AND BLACK CURRANT

Authors:

Taisiya D.Chermenskaya,Viktor I. Dolzenko,MaryaO.Petrova,AleksandrB.Laptiev,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00027

Abstract:

The technology of agricultural production involves the use of a significant amount of various pesticides, which is necessary to increase the yield and ensure production quality. In 2014, the consumption of chemical protective meansin Russiaamounted to 54.3 thousand tons, which is 97.3% of the total amount of pesticides consumed. Many specialists consider chemical methods of pest control to be the most effective. However, we should not forget that the preparations used for treating plants are not harmless and do not always completely decompose before harvesting. The aim of the present work was to study the dynamics of residualquantities of alpha-cypermethrin, imidacloprid, and clothianidin, the active ingredients(125+100+50 g/l) of suspension concentrate (SC) of “Batraider”insecticide in fruits and juice of cherry and black currant after treatment of thevegetative culture. The determination of alpha-cypermethrin, imidacloprid, and clothianidinwasperformed by gas-liquid and high-performance liquid chromatography. The study of decomposition dynamics of the active ingredients of the insecticide revealed that their content was rapidly decreasing.On the 20th day after application,italready was at ½ of Maximum Residue Limit (MRL) and further theywere not detected in any of the studied cultures in all of the considered climatic zones. Thus, the use of “Batrider”insecticide (SC) provides reliable protection to crops and allows one to get high-quality and safe products that can be consumed or used for production of juices and baby food.

Keywords:

Insecticide,active ingredient,alpha-cypermethrin,imidacloprid,clothianidin,stonefruit and berry crops,chromatography,

Refference:

I. ChelovechkovaVV, KomarovaASandChermenskaya TD (2018) Simultaneous determination of imidacloprid and clothianidin contents in potatoes and sugar beets [Odnovremennoyeopredeleniyeimidaklopridaiklotianidina v kartofeleisakharnoysvekle].Agrokhimiya, 7, 72–77.

II. Dolzhenko VI, Sukhoruchenko G.I., Burkova L.A., Belykh, E. B., MartynushkinA.N., IvanovaG.P., Ivanov SG, Vasilyeva TI, Tsibulskaya IA, YakovlevAAandBabich NV (2009) Assortment of chemical plant protection products of the new generation (insecticides, acaricides, molluscicides, rodenticides) [Assortimentkhimicheskikhsredstvzashchityrasteniynovogopokoleniya (insektitsidy, akaritsidy, mollyuskotsidy, rodentitsidy)]. Saint Petersburg: All-Russian Institute of Plant Protection.

III. Dolzhenko VI, Tsibulskaya IA, Chermenskaya TD, Alekseev EYuandSalimova DR (2018) Determination of residualquantities of clothianidin in pea seeds, cabbage, tomatoes and tomato juice, fruits and juice of stone fruit crops, black currant juice and berries by high-performance liquid chromatography. MG 4.1.3511-17 [Opredeleniyeostatochnykhkolichestvklotianidina v zernegorokha, kapuste, tomatakhitomatnomsoke, plodakhisokeplodovykhkostochkovykh, yagodakhisokechernoysmorodinymetodomvysokoeffektivnoyzhidkostnoykhromatografii, MUK 4.1.3511-17].Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, p. 15.

IV. Dolzhenko VI, Tsibulskaya IA, ChermenskayaTDandKovrov NG (2011) Determination of pesticide residues in food products, agricultural raw materials and environmental objects.Guidelines for determination of residualquantities of imidacloprid in apple and black currant juice, corn oil by high-performance liquid chromatography, MG 4.1.2768-10 [Opredeleniyeostatochnykhkolichestvpestitsidov v pishchevykhproduktakh, sel’skokhozyaystvennomsyr’yeiob”yektakhokruzhayushcheysredy.Metodicheskiyeukazaniyapoopredeleniyuostatochnykhkolichestvimidakloprida v sokeyablokichernoysmorodiny, maslekukuruzymetodomvysokoeffektivnoyzhidkostnoykhromatografii, MUK 4.1.2768-10]. In Collection of methodical guidelines,pp. 216–228. Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor.

V. EC (2016) European Commission Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed.http://ec.europa.eu/food/plant/protection/resources/qualcontrol_en.pdf.

VI. ECHFS (2016) European Commission Health and Food Safety, Regulation.http://ec.europa.eu/food/plant/pesticides/max_residue_levels/eu_rules/index_en.htm.

VII. FAO (2013)FAO statistical yearbook 2012. Europe and Central Asia Food and Agriculture.FAO.

VIII. Gorbatov VS, MatveevYuMandKononova TV (2008) Environmental assessment of pesticides: sources and forms of information [Ekologicheskayaotsenkapestitsidov: istochnikiiformyinformatsii]. AGRO XXI, 1-3, 7–9.

IX. GovorovDN, ZhivykhAVandShabelnikova AA (2015) The use of pesticides [Primeneniyepestitsidov]. Plant protection and quarantine, 4, 12.

X. Keikotlhaile BM, SpanoghePandSteurbaut W (2010) Effects of food processing on pesticide residues in fruits and vegetables: A meta-analysis approach.Food Chem. Toxicol., 48, 1–6.

XI. Komarova AS, ChermenskayaTDandChelovechkovaVV (2017)Determination of Ametoctradin in Plant Residues and Environmental Samples by HPLC with an UV Detector.J. Analyt. Chem., 72(10), 1077–1082.

XII. Laptiev AB (2017) Development of plant protection in the context of increasing the food security of the country [Razvitiyezashchityrasteniy v usloviyakhpovysheniyaprodovol’stvennoybezopasnostistrany].Information bulletin IOBC EPRS, 52, 187–190.

XIII. Lozowicka B (2015) Health risk for children and adults consuming apples with pesticide residue. Sci. Total Environ., 502, 184–198.

XIV. Miller TA and Salgado VL (1985) The mode of action of pyrethroids on insects. InLeaheyJP (ed) The PyrethroidInsecticides, pp. 43–97. London: Taylor & Francis.

XV. Onishchenko GG (2010) Decree No. 101, August 2, 2010, “On approval of HS 1.2.2701-10 “Hygienic Standards for Pesticide Content in Environmental Objects (List)” [Postanovleniye № 101 ot 02.08.2010 g. “Ob utverzhdeniiGN 1.2.2701-10 “Gigiyenicheskiyenormativysoderzhaniyapestitsidov v ob”yektakhokruzhayushcheysredy (perechen’)”]. Ministry of Justice of Russia, registration No. 18397, September 9, 2010

XVI. Petrova TM, Krasnikova NG, Nigrei ZN, GirenkoDBandKlisenkoMA (1992) Methodical guidelines for the determination of a new group of synthetic pyrethroids in plants, soil, and water of reservoirs by chromatographic methods. No. 4344-87 [Metodicheskiyeukazaniyapoopredeleniyunovoygruppysinteticheskikhpiretroidov v rasteniyakh, pochve, vodevodoyomovkhromatograficheskimimetodami № 4344-87].In Methods for determination of residualquantities of pesticides in food, feed, and the external environment, vol. 1, p. 301.Мoscow: Kolos.

XVII. PopovaAYu (2018) Hygienic standards for the content of pesticides in the environment (list).HS 1.2.3539-18 [Gigiyenicheskiyenormativysoderzhaniyapestitsidov v ob”yektakhokruzhayushcheysredy (perechen’).GN 1.2.3539-18].Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor.

XVIII. Simon-DelsoN, Amaral-RogersV, BelzuncesLP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, WhitehornPRandWiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.Environ.Sci.Pollut. Res. Int., 22,5–34.

XIX. Tomlin C (ed) (1997). The pesticide manual.Surrey: Brit. Crop. Prot. Council.

XX. Tsibulskaya IA, Dolzhenko VI, Yuzikhin OS, PrivezentsevVV, Chermenskaya TD (2007) Methodical guidelines for the determination of residualquantities of imidacloprid in water, soil, grain and straw of cereal crops, potato tops and tubers, pasture grasses, cucumbers, tomatoes, and pome fruit crops by high-performance liquid chromatography. MG 4.1.1802-03 [Metodicheskiyeukazaniyapoopredeleniyuostatochnykhkolichestvimidakloprida v vode, pochve, zerneisolomezernovykhkolosovykhkul’tur, botveiklubnyakhkartofelya, pastbishchnykhtravakh, ogurtsakh, tomatakhiplodovykhsemechkovykhkul’turakhmetodomvysokoeffektivnoyzhidkostnoykhromatografii, MUK 4.1.1802-03].In Collection of methodical guidelines, iss.5, p. 5. Moscow.

XXI. Zaichenko AI (approved by) (1980) Standardized sampling rules for agricultural products, foodstuffs, and environmental objects for the determination of residualquantities of pesticides. No. 2051-79 [Unifitsirovannyyepravilamiotboraprobsel’skokhozyaystvennoyproduktsii, produktovpitaniya, ob”yektovokruzhayushcheysredydlyaopredeleniyamikrokolichestvpestitsidov. № 2051-79]. Moscow.

XXII. Zenkevich IG, OstroukhovaOKandDolzhenko VI (2002) Optimum analytical parameters for the chromatographic characterization of pesticides.J.Analyt. Chem., 57(1), 35–39.

XXIII. Zinchenko VA (2012) Chemical protection of plants: products, technology, and environmental safety [Khimicheskayazashchitarasteniy: sredstva, tekhnologiyaiekologicheskayabezopasnost’]. Moscow: Kolos.

View | Download

AN INCREASE IN EFFICIENCY AND OPERATING RELIABILITY OF THE SYSTEM FOR AUTOMATIC CONTROL OF STEAM TURBINES FOR NUCLEAR POWER PLANTS

Authors:

Tat’yanaG. Zatsarinnaya,KonstantinP. Anikevich,AlexandrA. Skidan,SvetlanaA. Kachur,KirilB. Matuzaev,YuriyV. Braslavskiy,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00028

Abstract:

First and foremost, operation of nuclear power facilities is inseparably linked with solving the problems of their safety. To enhance safety, assure high reliability and effectiveness of controlling power units, software and hardware (SH) for computer-assisted control over a power unit [VIII, IX, XIV, V] are introduced, with electronics of electro-hydraulic governing systems of turbines (EHGS). EHGSis the principal system, which ensuresfunctioning of turbine in all stationary and intermittent operationmodes. Quality and reliability of supplying power to consumers directly depend on one function of the system for governing turbine, namely, on automatic frequency-capacity control. According to the existing standards of document [XVIII], regulation of frequency is specified by: the value of and time for mobilizing reserves, frequency droop, and dead-band of automatic control system (ACS). A response from power unit to changes in frequency shall be such that, when the value of drooping is fixed, a half of the required alteration in the power unit capacity is to be made within 10s, and 100% – within 30s. The standard specification prescribes the following recommended frequency droops for NPP turbines: 4…6%, recommended dead-band of the primary frequency regulation: a maximum of 0.02 Hz. Such requirements may bemet rather well, when using turbines equipped with electronic speed controller (ESC), which eliminates frequency deviations withhigh accuracy and makes it possible to promptly adjust the degree of irregularity and dead zone of frequency controller.Hence, to introduce standard primary and automatic secondary controlson the involved NPPs, pursuant to the modern requirements, a need has arisen to modernize their equipment. The design schemes of the systems for controlling steam turbines of NPPs had undergone changes, related to making electronics more sophisticated and simplifying hydraulics. However, in general, modernization has enhanced efficiency and reliability of the turbines’ ACSs. The data of rough calculation of structural reliability of the designed and newly modernized hydraulic systems, presented in this article, prove the results of quantitative assessment of reliability. A comparative analysis is given of standby and design ACSs of turbine К–1000–60/1500–2 considering major technical parameters and functional capabilities.

Keywords:

Automatic control system,power unit,modernization,turbine installation,frequency,turbine generator,electronic speed controller,efficiency,reliability,automation,safety,

Refference:

I. AnikevichК.P, ProleevА.V, SkidanА.А. Automatized Control System of turbo–installation ASUT–1000–2. Sevastopol: Sevastopol Institute Nuclear Energy and Industry Publ., 2003.

II. Artyukh S.F., Duel M.А., Shepelev I.G. Fundamentals of automatized control systems of energy-producing units of power stations. Khar’kov:Znanie LTD Publ., 1998.

III. BegunV.V. Probability analysis of nuclear plants’ safety. Kiev: NTTU КPI Publ., 2000.

IV. Brodov Yu. М., Savel’ev R.Z. Condensing units of steam turbines. Moscow: Energoatomizdat Publ., 1994.

V. Control systems of energy facilities. Available at: http://zish.com.ua/content.php?article.38 (15.04.16)

VI. Demchenko V.О. Automation and mathematical modelling of engineering processes for nuclear and thermoelectric power plants. Odessa: Astroprin Publ., 2001.

VII. Description of electronic speed governor.Available at:http://rosatom-cipk.ru/wp-content/uploads/2013/12/09_30.pdf(25.05.2015)

VIII. Elizarov I.А., Маrtеm’yanovYU.F.,SkhirtladzeА.G., FrolovS.V.Automationhardwares. Software and hardware facilities and controllers.Moscow: Mashinostroenie-1 Publ., 2004,

IX. Eliseev V.V., Largin V.А., PivovarovG.Yu.Software and hardwarefacilitiesofautomatedtechnological process control systems. Кiev:KievUniversityPubl.,2003.

X. GOST 25804.3–83. Nuclear Power station technological processes control system equipment. Durability, endurance, resistance requirements for external influencing factors.

XI. Grigor’ev V.A., Zorin V.M. Thermal and nuclear power stations. Moscow:Energoatomizdat Publ., 1989.

XII. Lozovskiy V.N. Defects of junctions and details of hydraulic units. Defects`description. Moscow: Mashinostroenie Publ., 1974.

XIII. Polovko A.M., Malikov I.M. Book of problems on reliability theory. Moscow: Radio Publ., 1972.

XIV. Results ofSeverodonetsk research and production union «Impuls» work on automation of power units of NPP with VVER. Available at:http://antrel.ru/atomic/raboty-severodoneckogo-npo-impuls-po/ (24.08.16)

XV. Rokhlenko V. Yu. Control system of KhTZ turbines. Moscow:Energoatomizdat Publ., 1988.

XVI. RokhlenkoV.Yu., Livshits M.E., Ageeva V.N. Hydraulics of electrohydraulic control systems (EGCS Hydraulics) of steam turbines. Ehergeticheskie I teplotekhnicheskieprotsessy v oborudovanie.2007;2: 130-138.

XVII. Shishmarev V. Yu. Technical Systems reliability. Moscow:Izdatelskiytsentr «Akademiya» Publ., 2010.

XVIII. STO 59012820.27.120.20.004-2013.Standard of organization.Norms of nuclear power units’ involvement in the rated primary frequency regulation.
XIX. Troyanovskij B.M., Filippov A.E., Bulkin A.E. Steam and gas turbines of nuclear power plants. Moscow:Energoatomizdat Publ., 1985.

XX. Trukhnij A. D. Stationary steam turbines. Moscow:Energoatomizdat Publ., 1990.

XXI. Turbine control systems.Available at:http://imp.lg.ua/index.php?Itemid=5&catid=2%3A2010-12-01-14-45-12&id=305%3A2014-12-02-12-59-14&lang=ru&option=com_content&view=article (30.08.16)

XXII. Zatsarinnaya T.G., Chuklin A.A., Shakhova N.V. Improvement of computer–based control systems for steam–turbine plants. Materialy XVII Mezhdunarodnojnauchno–prakticheskojkonf. «Nauchnoeobozreniefiziko–matematicheskikhtekhnicheskikhnauk v ХXI veke». Moscow, International Learned Society «Prospero» Publ. 2015; 17: 38-42.

XXIII. Zatsarinnaya T.G., Skidan A.A., Chuklin A.A., Melnik A.N. Modernization of hydroelectric follower actuator of control system of steam-turbineK–1000–60/1500. Ehergeticheskieustanovkiitekhnologii.2015; 1 (1):10-16.

XXIV. Zatsarinnaya T.G. Backup control with electronic speed regulator for turbine rotating speed control. Sciences of Europe. 2016; 2 (10): 109-113.

View | Download

MOISTENING FERTILIZER IRRIGATION SYSTEM USING TREATED STOCK-BREEDING SEWAGE

Authors:

Liliya A. Mityaeva,Maxim A. Lyashkov,Anna O. Matvienko,Yulia Yu. Ariskina,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00029

Abstract:

This study aims to improve the process flow design of the moistening fertilizer irrigation system using treated stock-breeding wastewater. To irrigate perennial grass, it is necessary to make three applications of stock-breeding wastewater at a rate of 60 m3/ha and natural water at a rate of 1 640 m3/ha in which case the supply of nitrogen, phosphorus, and potassium will be 970, 180, and 944 kg/ha, respectively. The irrigation of corn for ensilage requires making four applications of treated stock-breeding wastewater at a rate of 46 m3/ha and natural water at a rate of 654 m3/ha, whereas the amount of nutrient enrichment shall be N776P187K566. The combined process flow design of moistening and fertilizing with treated stock-breeding wastewater allows ensuring the input of a preset irrigation rate to the drop irrigation system simultaneously with the input of organic mineral fertilizer to the subterranean irrigation system. According to the agroecological assessment of the soil cover, the new system makes the soil more fertile. It is noted herein that the humus, phosphorus, potassium, and nitrate nitrogen content rose by 0.03 to 0.09 %, 30, 10, and 110 %, respectively. The increase in the metabolic calcium content from 64 to 75 % on average in the 0 to 60 cm layer and the reduction in the metabolic sodium content by 2.3 % of the total SAC decreased the intensity of salt accumulation in the soil.

Keywords:

Treated stock-breeding wastewater,irrigation system,irrigation mode,drop irrigation,subterranean irrigation,

Refference:

I. Alghobar, M. A., Ramachandra, L., and Suresha, S. Effect of sewage water irrigation on soil properties andevaluation of the accumulation of elements in Grass crop inMysore city, Karnataka, India. American Journal of Environmental Protection.2014; 3(5): 283-291.Published online November 20, 2014.DOI: 10.11648/j.ajep.20140305.22.

II. Ayars, J.E., Phene, C.J., Hutmacher, R.B., Davis, K.R., Schoneman, R.A., Vail, S.S., and Mead, R.M. Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory. Agricultural Water Management. 1999; 42 (1): 1–27.

III. Capra, A. and Scicobone, B. Emitter and filter tests forwastewater reuse by drip irrigation. Agricultural Water Management. 2004; 68 (2): 135–149.

IV. Domashenko,Yu., and Vasilyev, S.Agroecological Substantiation for the Use of Treated Wastewater for Irrigation of Agricultural Land. Journal of Ecological Engineering. 2018; 19 (1): 48–54. DOI: https://doi.org/10.12911/22998993/79567.

V. Domashenko, Yu. Ye. Problems and Prospects of Utilizing Wastewater for Irrigation: monograph [Problemyiperspektivyis-pol’zovaniyastochnykhvoddlyaorosheniya: monografiya]. Novocherkassk: Lik, 2017.
VI. Domashenko, Yu. Ye.,Vlasov, M. V., Vasilyev, S. M., and Matviyenko, A. O. Environmental Economic Justification of Utilizing Wastewater in Irrigation Systems Based on Dynamic Programming [Ekologo-ekonomicheskoyeobosnovaniyeis-pol’zovaniyastochnykhvodnaorositel’nykhsistemakhnaosnovemetodadinamicheskogoprogrammirovaniya]. NauchnyyzhurnalRossiyskogoNII problem melioratsii (Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems). 2017; 3(27): 32-42. Novocherkassk: RosNIIPM, 2017.Available at: http://www.rosniipm-sm.ru/archive?n=491&id=494.

VII. Dospekhov, B. A. Field Trial Procedure with Basics of Statistical Processing of Study Results [Metodikapolevogoopyta (s osnovamistatisticheskoyobrabotkirezul’tatovissledovaniy)]. Fifth revised edition. Moscow: Agropromizdat, 1985.

VIII. Dunca, E., Ciolea, D.-I., and Matei, A. The eco-technologies based on extensively natural treatment wastewater in rural and suburban areas the purpose of recovering the energy and nutrients. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2014; 1 (5): 689-694.

IX. Grant, S. A., Kunze, R.j., and Asrar, G. Irrigation with simulated secondary waste water on tiled soil cropped to bromegrass and corn(Conference Paper). Journal of Environmental Quality, 1982; 11 (3): 442-446.

X. Green, O., Katz, S., Tarchitzky, J., and Chen. Yo. Formation and prevention of biofilm and mineral precipitate cloggingin drip irrigation systems applying treated wastewater. Irrigation Science. 2018; 36: 257–270.

XI. Golchenko, M. G. and Zhelyazko, V. I. Irrigation with Effluents [Orosheniyestochnymivodami]. Moscow: Agropromizdat, 1988.

XII. Gostishchev, D. P. Irrigation with Effluents of Stock-Breeding Unit in Rostov Oblast’ [Orosheniyestochnymivodamizhivotnovodcheskogokompleksa v Rostovskoyoblasti] in Proceedings of International Scientific Research-to-Practice Conference “Resource Saving and Ecofriendly Technologies of Land Improvement, Reclamation, and Protection”. Novocherkassk, 2004. Pp. 43-47.

XIII. Gostishchev D. P., Khvatysh, N. V., and Valiyev D. S. Environmental Protection Problems of Irrigation with Watewater and Stock-Breeding Effluents [Ekologicheskiyeproblemyokhranyokruzhayushcheysredyprioroshe-niistochnymivodamiizhivotnovodcheskimistokami]. NauchnyyzhurnalRossiyskogoNII problem melioratsii (Scientific Journal of Russian Scientific Research Institute of Land Improvement Problems). 2016; 3(23): 13. Novocherkassk: RosNIIPM, 2016.Available at: http://www.rosniipm-sm.ru/archive?n=424&id=439

XIV. Gostishchev, D. P., Vershinin, V. V., and Khvatysh, N. V. Disposal of Effluents and Stock-Breeding Wastewater on Irrigation Fields [Utilizatsiyas-tochnykhvodizhivotnovodcheskikhstokovnapolyakhorosheniya]. Evraziyskiy Soyuz Uchenykh (Eurasian Union of Scientists). 2015; 7-7(16): 7-12.

XV. Hassanli, A. M., Mohammad, A. Ebr., and Beecham, S. The effects of irrigation methods with effluent andirrigation scheduling on water use efficiencyand corn yields in an arid region. Agriculural Water Management. 2009; 96: 93 – 99.

XVI. Kaboosi, K. The assessment of treated wastewater quality and the effectsof mid-term irrigation on soil physical and chemical properties(case study: Bandargaz-treated wastewater). Applied Water Science. 2017. 7:2385–2396. – DOI 10.1007/s13201-016-0420-5

XVII. NTP APK 1.30.03.01-06 Process Engineering Codes of Irrigation Systems Using Stock-Breeding Wastewater – Introduction [Normytekhnologicheskogoproyektirovaniyaorositel’nykhsistem s ispol’zova-niyemzhivotnovodcheskikhstokov. –Vved.]. 2007-01-01. IS “Techexpert: Generation 6” Intranet [Electronic resource]. Codex Yug, 2019.

XVIII. Oron, G., DeMalach, J., Hoffman, Z., and Cibotaru, R. Subsurface microirrigation with effluent. Journal of Irrigation and Drainage Engineering. 1991; 117(1): 25–36.

XIX. Redina, A. V., Domashenko, Yu. Ye., and Vasilyev, S. M. Soil Suitability Assessment of Stock-Breeding Wastewater Used to Irrigate Southern Black Earth [Agromeliorativnayaotsenkaochishchennykhzhivotnovod-cheskikhstochnykhvodpriorosheniichernozemovyuzhnykh]. IzvestiyaOrenburgskogogosudarstvennogoagrarnogouniversiteta (News of Orenburg State Agrarian University). 2017; 6(68): 8-11.

XX. Rekik, I.,Chaabane, Z., Missaoui, A., Boukeet, A. A., Luptakova, L., Elleuch, A., and Belbahri, L. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor (L.) Moench), alfalfa (Medicago sativa L.) and fescue (FestucaarundinaceaSchreb.). Journal of Hazardous Materials. 2017; 326: 165-176.

XXI. Resource-Saving Actions for Cultivating Field Crops in Irrigated Farming Rotations of Rostov Oblast’ (Guidelines) [Resursovlagosberegayushchiyepriyemyvozdelyvaniyapolevykhkul’tur v oroshaye-mykhsevooborotakhRostovskoyoblasti (rekomendatsii)]. Novocherkassk: Lik, 2014.

XXII. Romanenko, G. A. et al. Concept of Agricultural Land Improvement in Russia [Kontseptsiyamelioratsiisel’skokhozyaystvennykhzemel’ v Rossii]. Moscow: NIA-Priroda, 2009.

XXIII. Ruskin, R. Reclaimed water and subsurface irrigation. 1992. ASAE Paper No. 92-2578. ASAE, St. Joseph, Michigan.

XXIV. Shchedrin, V. N., Kolganov, A. V., Vasilyev, S. M., and Churayev, A. A. Irrigation Systems in Russia: from Generation to Generation: monograph, pt. 2 [Orositel’nyyesistemyRossii: otpokoleniya k pokoleniyu: monografiya, ch. 2]. Novocherkassk: Gelikon, 2013.

XXV. State report “On Ambient Conditions and Environmental Protection in Russia in 2016” [Gosudarstvennyydoklad «O sostoyaniiiobokhraneokruzhayushcheysredyRossiyskoyFederatsii v 2016 godu». Moscow: Ministry of Natural Resources of Russia; NIA-Priroda, 2017.

XXVI. Ulrich, H., Klaus, D., Irmgard, F., Annette, H., Juan, L.-P., Regine, S.Microbiological investigations for sanitary assessment of wastewater treated in constructed wetland. Water Research. 2005; 39(20): 4849-4858.

XXVII. Vasilyev, S. M., Chelakhov, Ts., and Vasilyeva, Ye. A. Environmental Concept of Assessing Influence of Irrigation Systems on Landscapes in Lower Don Region: monograph [Ekologicheskayakontseptsiyaotsenkivoz-deystviyaorositel’nykhsistemnalandshaftyNizhnego Dona: monografiya]. Roston-on-Don: North Caucasus Scientific Center of Higher School, 2005.

XXVIII. Vasilyev, S. M. and Domashenko, Yu. Ye. RF Patent 2551505. IPC С02F 1/52. Method of Treating Liquid Waste from Pig-Breeding Complexes and Farms for Utilization in Agriculture [Sposobpodgotovkizhidkikhotkho-dovsvinovodcheskikhkompleksovifermdlya-sel’skokhozyaystvennogoispol’zovaniya]. No. 2013131344/05. Appl. from 08.07.2013; publ. 27.05.2015. Bulletin No. 15.

XXIX. Wang, M., Peng, C., Chen, W., and Markert, B. Ecological risks of polycyclic musk in soils irrigated with reclaimed municipal wastewater. Ecotoxicology and Environmental Safety. 2013; 97: 242-247.

View | Download

CELLULAR REACTIONS IN CAPILLARY AND VENOUS BLOOD IN NORTHERNERS TO A SHORT-TERM PERIOD IN A CLIMATIC CHAMBER

Authors:

Liliya K. Dobrodeeva,Anna V.Samodova,Svetlana N. Balashova,

DOI:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00030

Abstract:

The present article describes a comparative study on the cellular reactions in capillary and venous blood in northerners under general hypothermia in a climatic chamber during different photoperiods. The authors examined 108 relatively healthy people that lived in Archangelsk (80 women and 28 men aged 21 to 50 years old). It was established that total neutrophil count in venous blood was lowerby 8.07±0.41%, monocyte count – by 51.32±1.03% and basophil count – by 50.21±1.24% than in capillary blood, but the lymphocyte count was higher by 25.23±0.41% due to smaller forms that are known to be recirculating. After a 5-minute period in a climatic chamber (“USHZ-25N”, Russia) at -25º,25 volunteers (27.53%)during a polar night and 16 volunteers during a polar day had elevated levels of neutrophils in the venous blood due to the increase in the levels of TNF-α in blood and decrease in noradrenaline, adrenaline, and irisin.During a summer period, the increase in monocyte count contributed to the reactions of neutrophils. The volunteers that reacted to short-term general hypothermia with an increase in the neutrophil count had the following peculiarities in the venous blood: general neutrophil count and their phagocytic activity, lymphocyte count, including CD71+, ATP in lymphocytes, adrenaline, TNF-α and irisin levels were higher in blood serum. The content of endothelin-1 did not change significantly.

Keywords:

Cold,photoperiod,venous blood,capillary blood,neutrophils,lymphocytes,monocytes,cytokines,irisin,

Refference:

I. Agui T., Xin X., Cai Y., Sakai T.; Matsumoto K. Stimulation of interleukin-6 production by endothelin in rat bone marrow-derived stromal cells – Blood. 1994; 84: 2531-2538.

II. AmbrusC.M.,AmbrusI.L. Regulation of the leukocyte level -Ann.N.Y.Acad. Sci. 1959; 77: 445-479.

III. Azcutia V., Stefanidakis M., Tsuboi N., Mayadas T., Croce K.J., Fukida D. Aikawa M., Newton G., LuscinskasF.M. Endothelial CD47promotesvascularendothelial-cadherintyrosine phosphorylation andparticipatesinTcellrecruitmentatsites of inflammationinvivo – J. Immunol. 2012; 189 (5): 2553-2562.

IV. BalashovaS.N.,PashinskayaK.O. Influence of background neutropenia on the immune reactions in relatively healthy patients after short-term cooling. Journal of Ural Medical Academic Science. 2018; 15 (2): 239-247.

V. Barkhatov I.V. Application of laser Doppler flowmetry for the evaluation of disorders in the system of human blood microcirculation. Kazan Medical Journal. 2014; 95 (1): 63-69.
VI. BergstrandS., LindbergL.G., EkA-C., Lindén M., Lindgren M. Blood flow measurement at different depths using photoplethysmography and laser Doppler techniques – Skin. Res. Technol. 2009; 15: 139-147.

VII. Braynsteiner H. Physiologie und Physiopathologie der weissen Blutzellen. Stuttgard, 1959.

VIII. BucktonK.E., Brown W.M.С., Smith P.G. Lymphocyte survival in men treated with X-rays for ankylosing spondylitis – Nature. 1967; 214 (87): 470-473.

IX. Carper H.A., Hoffman P.L. The intravascular survival of transfused canine pelger-huetneutrophyls and eozinophils – Blood. – 1966; 27: 739-745.

X. Choi C.M., Bennett R.G. Laser Dopplers to determine cutaneous blood flow. Dermatol. Surg. 2003; 29: 272-280.

XI. Chugh A., Eudes F., Shim Y.S. Cell-penetrating peptides: Nanocarrier for macromolecule delivery in living cells – IUBMB Life. 2010; 62 (3): 183-193.

XII. DalmassoA.P.,Goldish D., Benson B.A., Tsai A.K.,WasilukK.R., VercellottiG.M. Interleukin-4 induced up-regulation of endothelial cell claudin-5 through activation of FoxO1: Role in protection from complement-mediated injury – J. Biol. Chem. 2014; 289 (2): 838-847.

XIII. DobrodeevaL.K.,Patrakeeva V.P. Influence of migration and proliferative processes in leukocytes on the immune status of people living in the highlands. Ekaterinburg: UrO RAS, 2018.

XIV. DobrodeevaL.K.,Zhilina L.P. Immunological reactivity, health status of the population in Arkhangelsk oblast. Ekaterinburg, UrO RAS, 2004.

XV. Ford W.L., GowansJ.L., The Traffic of Lymphocytes. – Seminars Hemat. 1969; 6: 67-83.

XVI. Golder M., Chen C.L.H., O’Shea S., Corbett K., ChrystieI.L., French G. Potential risk of crossinfection during peripheral-venous access by contaminated tourniquets – Lancet. 2000; 355(9197): 44.

XVII. Heller P. The blood and blood forming organs – The Year Book of Medicine.1972: 69-86.

XVIII. Humeau A., Steenbergen W., Nilsson H., Stromberg T. Laser Doppler perfusion monitoring and imaging: novel approaches – Med. Biol. Eng. Comput. 2007; 45: 421-435.

XIX. KalenovaL.F.,SukhoveyY.G., Novikova M.A., Fisher T.A. Influence of experimental local temperature factor on the immunological parameters of an organism. Journal of New Medical Technologies. 2009; 16 (4): 21-24.

XX. KozlovV.I.,SokolovV.G. The study of the fluctuations of bloodstream in the system of microcirculation. Materials of the 2nd All-Russian symposium “Application of laser Doppler flowmetry in medical practice”.Moscow, 1998.

XXI. KozyrevaT.V. Central and peripheral thermoreceptors. Comparative analysis of the effects of prolonged adaptation to cold and noradrenaline – Neuroscience and behavioral physiology. 2007; 37(2): 191-198.

XXII. KozyrevaT.V.,EliseevaL.S. Immune response and content of corticosteroids in patients with different regiments of cooling. Journal of Experimental Biology and Medicine. 2002; 133 (4): 384-387.

XXIII. KozyrevaT.V.,EliseevaL.S. Immune response in cold exposures of different types – Journal of Thermal Biology. 2000; 25 (5): 401-404.

XXIV. KozyrevaT.V.,EliseevaL.S., Vavilin V.A. Influence of the rate and depth of cooling on the immune response and content of cortecosteron in blood plasma. Russian Physiological Journal. 2000; 86 (12): 1618-1623.

XXV. KozyrevaT.V.,EliseevaL.S., TsoiL.V., KhramovaG.M. Effect of rapid slight cooling of the skin in various phases of immunogenesis on the immune response – Bulletin of experimental biology and medicine. 2006; 142(4): 409–412.

XXVI. KozyrevaT.V.,TkachenkoE.Y., SimonovaT.G. Functional alterations during adaptation to cold. Acheivements in Physiological Sciences. 2003; 34(2): 94-102.

XXVII. KozyrevaT.V.,TkachenkoE.Y., EliseevaL.S., KhramovaG.M., TuzikovF.V., Kozaruk V.P., VoronovaI.P. Influence of Са2+ thermoregulatory reactions, content of lipoproteids in blood and immune response in patients exposed to cold and in patients with arterial hypertension. Journal of RAS. 2007; 4(126): 138-144.

XXVIII. KrechinaE.K.,KozlovV.I., Maslova V.V. Microcirculation in gingival parodont tissue. М.: GEOTAR-Media, 2007.

XXIX. KrupatkinA.I. New possibilities in the evaluation of innervation of cutaneous microvessels with a spectral analysis of the fluctuations of the microhemodynamics. Regional blood and microcirculation. 2004; 4: 52-59.
XXX. KulakovY.V.,Kaminskiy B.F. Meteogeophysical stress and ways of its overcoming. Vladivostok: Medicina DV, 2003.

XXXI. KulikovV.Y.,KimK.B. Oxygen regimen in the adaptation of humans at the Far North. Novosibirsk: Science, 1987.

XXXII. LedyankinaO.V.,PuchkovaМ.S., FatiyanovaА.S. Hematological laboratory assays: handbook for students. Sverdlovsk, 2016.

XXXIII. Liu Na, Liu Juntian, JiYuanyuan, Lu Peipei, Wang Chenjing, Guo Fang. C-reactive protein induces TNF-α secretion by p38 MAPK-TLR4 signal pathway in rat vascular smooth muscle cells – Inflammation. 2011; 34 (4): 283-290.
XXXIV. Meuret G. Hoffman G. Monocyte kinetic studies in normal and disease states – Brit. J. Hematol. 1973; 24: 275-279.

XXXV. MigachevaА.А. Comparative characteristics of cellular composition of venous and capillary blood. Post-graduate Journal of Povolzhie. 2009; 7-8: 174-177.

XXXVI. Miller J.F.A.P., Basten A., Stert I., Cheers C. Interaction between lymphocytes in immune responses – Cell.Immunol.1971;2 (5): 469-495.

XXXVII. Neuret G., FriednerT.M. Neutrophyle and monocyte kineties in a case of cyclic neutropenia – Blood. 1974; 43: 565-574.

XXXVIII. NikolaevV.M.,SemenovaK.E., NaumovaY.I., Vladimirov A.S., GolderovaL.N., Kuzmina S.S., Fedorova S.A. Functional activity of leukocytes in blood and nonspecific adaptive reaction of rats to cold. Veterinary. 2016; 1: 44-46.

XXXIX. Normal hematopoiesis and its regulation. Edited by Acad. N.A. Fedorova. М.: «Medicina», 1976.

XL. Procedures for the collection of diagnostic blood specimens by venipuncture – Wayne P.A.: Approved standard, 5th edition. – 2003. – NCCLS document H3-A5.

XLI. SamodovaA.V.,DobrodeevaL.K. Association of the content of endothelin-1 and response of the immune reaction in people to short-term cooling. Journal of Ural Medical Academic Science. 2018; 15 (2): 299-308.

XLII. Shulman Z.P., MakhanekA.A. Influence of temperature and acidification of bloodonhemorheological properties. Engineering and Physics Journal.2005; 78 (5): 180-185.

XLIII. SoterN.A., Lewis R.A., Corey E.J., Austen K.F. Local effects of synthetic leukotriens (LTC4, LTD4, LTE4, and LTB4) in human skin – J. Invest. Dermatol. 1983; 80(2) :115-119.

XLIV. Sutton C.D., White S.A., Edwards R., Lewis M.H. A prospective controlled trial of the efficacy of isopropyl alcohol wipes before venesection in surgical patients – Annals of the Royal College of Surgeons. 1999; 81(3): 183-186.

XLV. Thomson A. TheCytokineHandbook. London, 1992.

XLVI. TikhomirovaI.A.,MuravievA.V. Physiological role and mechanisms of erythrocytes aggregation. Russian Physiological Journal. 2007; 93 (12): 1382-1393.

XLVII. TimerbulatovV.M.,UrazbakhtinI.M., Fayazov R.R., Khasanov A.G., DautovS.B., SibaevB.M., SagitovR.B., Sakhautdinova I.V., UzbakhtinM.I. The application of laser Doppler flowmetry in endoscopy and endosurgery in patients with acute conditions in the abdominal organs.М.:MEDpress-inform, 2006.
XLVIII. Totolyan A.А., FreidlinI.S. Cells of the immune system. SPb.: Science, 2000.
XLIX. Van Hove L., Chicano T., Brace L. Anemia diagnosis, classification, and monitoring using cell-dyn technology reviewed for the New Millennium – Laboratory Hematology. 1999; 6: 93-108.

L. Zhai H. Frisch S., Pelosi A., Neibart S., MaibachH.I. Antipruritic and thermal sensation effects of hydrocortisone creams in human skin – Skin. Pharmacol. Appl. Skin. Physiol. 2000; 13: 352-357.
LI. ZubatkinaI.S.,DobrodeevaL.K., MalakhovaM.Y., KryzhanovskiyE.V., ZubatkinaO.V. Entropy as a factor of evaluation of the immune status. Journal of I.I. Mechnikov Northern-Western State Medical University. 2012; 1 (4): 57-61.

View | Download