Authors:
V. Pardha Saradhi,M. Siva Kumar,DOI NO:
https://doi.org/10.26782/jmcms.spl.5/2020.01.00025Keywords:
Firefly Algorith,Integral Square Error,Routh-Hurwitz,Lower order,Higher order,Abstract
The firefly optimization technique gives the reduced order model for the higher-order interval system. Stimulated by sporadic behavior of fireflies to act as the signal system to impress other fireflies. The fitness function is developed using Routh approximation and cross multiplication of transfer function. The stability is analyzed through Routh-Hurwitz stability.Refference:
I. A. A. S. Rao, S. Slamba, S. V. Rao,” comments on a further note on
selecting a low order system using the dominant Eigen value concept”, IEEE
transaction and automatic control, Vol.: 26, Issue: 2, 1981.
II. B. Bandyopadhyay, A. Upadhye, O. Ismail, “γ-δ Routh Approximation For
Interval Systems,”IEEE transaction and automatic control, Vol.: 42, Issue:8,
1997
III. B. Bandyopadhyay, O. Ismail, R. Gorez, “Routh pade approximation for
interval systems,”IEEE transaction and automatic control, Vol.: 39, Issue:
12, 1994.
IV. B. W. Wan,” linear model reduction using Mihailov criterion and pade
approximation technique” , Int.J.Control, Vol.: 33, Issue:6, 1981.
V. C. Hwang, S. F. Yang,” comments on the computation of interval routh
approximation,” IEEE transaction and automatic control, Vol.: 44, Issue:9,
1999
VI. D. Gorinevsky, S. Boyd, G. Stein, “Design of Low-Bandwidth Spatially
Distributed Feedback,”IEEE Transactions on Automatic Control, Vol.: 53,
Issue: 1, pp. 257-272, 2008.
VII. D. K. Kumar,S. K. Nagar, J. P. Tiwari, “A New Algorithm for model order
reduction of interval systems,”Bonfring International Jornal of Data Mining,
Vol.: 3, Issue: 1, 2013
VIII. D. K. Saini, R. Prasad, “Order Reduction of Linear Interval Systems Using
Genetic Algorithm,”International Journal of Engineering and Technology,
Vol.: 2, Issue:5, pp. 316-319, 2010
IX. E. J. Davison, “A method for simplifying linear dynamic systems,”IEEE
Trans. Autom. Control AC, Vol.: 11, pp. 93-101, Jan. 1966.
X. J. Pal, “system reduction by a mixed method,”IEEE technical notes, 1980.
XI. K. J. Khatwani, R. K. Tiwari, J. S. Bajwa , “On Chuang,s Continued fraction
method of model reduction,”IEEE transaction and automatic control, Vol.:
25, Issue: 4, 1980.
XII. M. R. Chidambara, “Further comments on A method for simplifyinglinear
dynamic systems,”IEEE Trans. Autom. Control AC, Vol.: 1, pp. 799-800,
1967.
XIII. T. N. Lucas , “Differentiation reduction method as a multipoint pade
approximation,”electronic letters, Vol.: 28, Issue: 1, 1988.
XIV. T. N. Lucas, “Linear system reduction by impulse energy
approximation,”IEEE transaction and automatic control, Vol.: 30, Issue: 8,
1985.
XV. X. S. Yang, “Nature –Inspired Metaheuristic Algorithms”, Luniver Press
Frome, Second Edition, 2010
XVI. Y.Bistritz , “Mixed complete pade model reduction: a useful formulation for
closed loop design,”electronic letters, 1980.
XVII. Y. Dolgin, E. Zeheb, “On routh pade model reduction of interval systems,”
IEEE transaction and automatic control, Vol.: 48, Issue: 9, 2003.
XVIII. Y. Shamash, “Failure of the Routh Hurwitz method of Reduction,”IEEE
Trans. Autom. Control, Vol.: 25 , Issue: 2, pp. 615 – 6, 1980.
XIX. Y. Shamash,” Stable reduced order models using Pade type approximation,”
IEEE T Automat Contr, Vol.: 19, Issue: 5, pp. 615–616, 1974