Authors:
G Rajeswari,T Vasanthi,M Amala,T Lakshmi Narayana,DOI NO:
https://doi.org/10.26782/jmcms.2020.08.00059Keywords:
Square Absorption Semiring,Idempotent semiring,Periodic,Zeroid,Right (left) regular,Abstract
In this research article, we work with varieties of enriched semirings. The proposed study gives the structure of Square Absorption semirings satisfying for all in S. We study the condition under which is idempotent and/or is idempotent. We also study the structure of this class of semirings under which additive reduct and multiplicative reductare positively totally ordered semirings.Refference:
I. I. Chajda, H. Langer, (2015) On a variety of commutative multiplicatively idempotents semirings, Semigroup Forum, Springer Science+Businesss Media New York 2016.
II. I. Chajda, H. Langer, (2018) The variety of commutative additively and multiplicatively idempotent semirings, Semigroup Forum, 96:409-415.
III. J.S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dordercht, 1999.
IV. Mariana Durcheva, A note on idempotent semirings, AIP Conference Proceedings 1789, 060006(2016);
V. M. Ren, X. Zhao (2016), The varieties of semilattice-ordered semigroups satisfying and , Period Math Hung, AkademiaiKiado, Budapest, Hungary 2016.
VI. M. Satyanarayana, “Positively Ordered Semigroups”, Lecture notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol. 42(1979).
VII. M. Satyanarayana, “On the additive semigroup structure of semirings” Semigroup Forum Vol. 23(1981)7-4.
VIII. M. Satyanarayana “On the additive semigroup of ordered semirings” Semigroup Forum Vol.31(1985) 193-199.
IX. M. K. Sen, Y. Q. Guo, and K. P. Shum, A Class of Idempotent Semirings, Semigroup Forum, vol. 60(2000) 351-367.
X. M. Amala, T. Vasanthi, Idempotent Property of Semirings, International Journal of Pure Algebra-5(9), 2015, 156-159.
XI. N. Sulochana, T. Vasanthi, Structure of Some Idempotent Semirings, Journal of Computer and Mathematical Sciences, Vol.7(5), 294-301, May 2016.
XII. N. Sulochana, T. Vasanthi, Properties of Completely Regular Semirings, Southeast Asian Bulletin of Mathematics (2016) 40: 923-930.
XIII. T. Vasanthi, Y. Mounikarchana and K. Manjula, Structure of Semirings, Southeast Asian Bulletin of Mathematics (2011) 35: 149-156.
XIV. Y. Sha, M. Ren (2014), On the varieties generated by ai-semirings of order two, Semigroup Forum, Springer Science+Business Media New York 2014.
XV. Y. Guo, K. Shum, M. Sen (2003), The semigroup structure of left Clifford semirings, Acta Math. Sin. (Engl. Ser.), 2003, 19(4): 783-792.