Yaqoub Ahmed,M. Nadeem,M. Aslam,




Semirings,centralizers ,α– centralizer.,


 An additive mapping γ : S → S is  α − centralizer, if γ(xy) = γ(x)α(y) where α is an endomorphism on S, holds  for all x, y S. In this article, we discuss some functional identities on additive mapping γ : S → S  on a semiring S, which makes it α-centralizer. Further, we investigate some conditions on α – centralizers which enforces commutativity in semirings.  


I. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991), 609614.
II. H. J. Bandlet and M. Petrich, Subdirect products of rings and distrbutive lattices, Proc. Edin Math. Soc. 25 (1982), 135171.
III. I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 11041119.
IV. J. Vukman, Centralizer on semiprime rings, Comment. Math. Univ. Carolinae, Vol 42(2001), pp 237-245.
V. J. Vukman, An identity related to centralizer in semiprime rings. Comment. Math. Univ. Carolinae, Vol 40 (1999) pp 447-456
VI. K. Glazek, A Guide to Literature on Semirings and their Applications in Mathematics and Information Sciences with Complete Bibliography, Kluwer Acad. Publ., Dodrecht, 2002.
VII. M.A Javed, M. Aslam and M. Hussain, On condition (A2) of Bandlet and Petrich for inverse semirings, International Mathematical forum, vol 7(2012), no.59, 2903-2914.
VIII. M. Bresar, Zalar B., On the structure of jordan *-derivations, Colloquium Math. (1992), 163-171.
IX. M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321322.
X. M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 10031006.
XI. P.H. Karvellas, Inversive semirings, J. Austral. Math. Soc. 18 (1974), 277-288
XII. P. Kostolnyi, F. Mi sn, Alternating weighted automata over commutative semirings, Theoret. Comput. Sci. 740 (2018), 127.
XIII. S. Ali, N. A. Dar and J. Vukman, jordan left centralizers of prime and semiprime rngs with involution, Beitr. Algebra. Geom. 54 (2) (2013), 609-624.
XIV. S. Sara, M. Aslam, M.A Javed, On centralizer of Semiprime inverse semirings, Discussiones Mathematicae, General Algebra and Applica- tions 36 (2016) 71-84
XV. U. Hebisch, H. J.Weinert, Semirings: Algebraic Theory and Applica- tions in the Computer Science, World Scientific, 1998.
XVI. V.N. Kolokoltsov, V. Maslov, Idempotent Analysis and Applications, Kluwer, Dordrecht, 1997.
XVII. V. Maslov, S.N. Sambourskii, Idempotent Analysis, Advances Soviet Math. 13, Amer. Math. Soc., Providence, R.I., 199

View Download