Iman Abdalkarem Hassan,Nabil Hassan Hadi,Whab K. Yousif,



Wheeled mobile robot,dynamic uncertainty,Kinematic and dynamic controller,Dynamic control,Transient efficiency,


This paper suggests a scheme for trajectory tracking on a two wheeled mobile robot using integral sliding mode control method in the presence of external disturbances and inertia uncertainties. In this study the modified adaptive sliding mode controller for nonholonomic wheeled mobile robot is developed. Nonlinear control used to combine the kinematic and dynamic controller to follow the desired path. Firstly, the desired path is created. Secondly, the kinematic tracking controller used linear and angular velocities form reference model and feeds posture and velocities errors as input term in the sliding controller. Finally, the dynamic control was used to follow the path. Proposed control system is verified and validated using MATLAB\SIMULINK to track the required WMR trajectory and it is shown that the suggested system has better transient efficiency on different trajectories with acceptable steady stateerror.


I Al-Araji, Ahmed S., & Ibraheem, B. A. (2019). A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot. Journal of Engineering, 25(8), 80–99.

II Al-Araji, Ahmed Sabah. (2014). Development of kinematic path-tracking controller design for real mobile robot via back-stepping slice genetic robust algorithm technique. Arabian Journal for Science and Engineering, 39(12), 8825–8835.

III Antonelli, G., Chiaverini, S., & Fusco, G. (2007). A fuzzy-logic-based approach for mobile robot path tracking. IEEE Transactions on Fuzzy Systems, 15(2), 211–221.

IV Bessas, A., Benalia, A., & Boudjema, F. (2016). Integral sliding mode control for trajectory tracking of wheeled mobile robot in presence of uncertainties. Journal of Control Science and Engineering, 2016.

V Binh, N. T., Tung, N. A., Nam, D. P., & Quang, N. H. (2019). An adaptive backstepping trajectory tracking control of a tractor trailer wheeled mobile robot. International Journal of Control, Automation and Systems, 17(2), 465–473.

VI Chwa, D. (2004). Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Transactions on Control Systems Technology, 12(4), 637–644.

VII Das, T., & Kar, I. N. (2006). Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Transactions on Control Systems Technology, 14(3), 501–510.

VIII Ding, Y., Liu, C., Lu, S., & Zhu, Z. (2018). Hyperbolic Sliding Mode Trajectory Tracking Control of Mobile Robot. 2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018).

IX Esmaeili, N., Alfi, A., & Khosravi, H. (2017). Balancing and trajectory tracking of two-wheeled mobile robot using backstepping sliding mode control: design and experiments. Journal of Intelligent & Robotic Systems, 87(3–4), 601–613.

X Fierro, R., & Lewis, F. L. (1998). Control of a nonholonomic mobile robot using neural networks. IEEE Transactions on Neural Networks, 9(4), 589–600.

XI Fukao, T., Nakagawa, H., & Adachi, N. (2000). Adaptive tracking control of a nonholonomic mobile robot. IEEE Transactions on Robotics and Automation, 16(5), 609–615.

XII Hadi, N. H. (2005). Fuzzy control of mobile robot in slippery environment. 1(2), 41–51.

XIII Hamoudi, A. K. (2016). Design and Simulation of Sliding Mode Fuzzy Controller for Nonlinear System. Journal of Engineering, 22(3), 66–76.

XIV Kanayama, Y., Kimura, Y., Miyazaki, F., & Noguchi, T. (1990). A stable tracking control method for an autonomous mobile robot. Proceedings., IEEE International Conference on Robotics and Automation, 384–389.

XV Li, Y., Wang, Z., & Zhu, L. (2010). Adaptive neural network PID sliding mode dynamic control of nonholonomic mobile robot. The 2010 IEEE International Conference on Information and Automation, 753–757.

XVI Liu, Y., Zhu, J. J., Williams II, R. L., & Wu, J. (2008). Omni-directional mobile robot controller based on trajectory linearization. Robotics and Autonomous Systems, 56(5), 461–479.

XVII Martins, F. N., Celeste, W. C., Carelli, R., Sarcinelli-Filho, M., & Bastos-Filho, T. F. (2008). An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 16(11), 1354–1363.

XVIII Mehrjerdi, H., & Saad, M. (2011). Chattering reduction on the dynamic tracking control of a nonholonomic mobile robot using exponential sliding mode. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(7), 875–886.

XIX Raja, P., & Pugazhenthi, S. (2012). Optimal path planning of mobile robots: A review. International Journal of Physical Sciences, 7(9), 1314–1320.

XX Rao, A. M., Ramji, K., Rao, B. S. K. S. S., Vasu, V., & Puneeth, C. (2017). Navigation of non-holonomic mobile robot using neuro-fuzzy logic with integrated safe boundary algorithm. International Journal of Automation and Computing, 14(3), 285–294.

XXI Samson, C., & Ait-Abderrahim, K. (1991). Feedback control of a nonholonomic wheeled cart in cartesian space. Proceedings. 1991 IEEE International Conference on Robotics and Automation, 1136–1137.

XXII Saud, L. J., & Hasan, A. F. (2018). Design of an Optimal Integral Backstepping Controller for a Quadcopter. Journal of Engineering, 24(5), 46–65.

XXIII Umar, S. N. H., Bakar, E. A., Soaid, M. S., & Samad, Z. (2014). Study on multi tasks of line following differential wheeled mobile robot for in-class project. International Journal of Modelling, Identification and Control, 21(1), 47–53.

XXIV Wu, X., Jin, P., Zou, T., Qi, Z., Xiao, H., & Lou, P. (2019). Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots. Journal of Intelligent & Robotic Systems, 96(1), 109–121.

XXV Xu, Y. (2008). Chattering free robust control for nonlinear systems. IEEE Transactions on Control Systems Technology, 16(6), 1352–1359.

XXVI Yang, J.-M., & Kim, J.-H. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on Robotics and Automation, 15(3), 578–587.

XXVII Young, K. D., Utkin, V. I., & Ozguner, U. (1999). A control engineer’s guide to sliding mode control. IEEE Transactions on Control Systems Technology, 7(3), 328–342.

View Download