Steady Flow Of A Micropolar Fluid Through Coaxial Circular Cylinders Under Constant Pressure Cradient


Supriya Panja,



micropolar fluid,cylinder,steady flow,circular pipe,


The aim of this paper is to investigate the problem of steady flow of micropolar fluid  in an annulus bounded by two co-axial circular cylinders of radii a and b, b being greater than a. The annular flow takes place under the action of constant pressure gradient. The velocity and microrotatioin component as well as the rate of discharge of the fluid through the annulus and time of efflux have been derived analytically in closed froms. Numerical calculations have been  given to find out the velocity in viscous fluid and a percentage decrease in micropolar fluid and a persentage decrease in micropolar fluid over viscous fluid corresponding to this flow have been compared. The microrotation has also been calculated. It is clear from the numberical calculations that the fluid velocity is always less in micropolar fluid than in viscous fluid. Also the rate of discharge in micropolar fluid is considerably less than that of viscous fluid. In fact, all important results are less in micropolar fluid than the viscous fluid.


I. A.C. Eringen, Intern. J. Engg. Sci., 2 (1964), 205.

II. A.C. Eringen, Proc. XI Intern. Congress of Appl. Math. Springer Verlag. (1965).

III. A.C. Eringen, Proc. 5th Symposium of Navel Hydrodynamics, Bergen, Sept. 10 (1964).

IV. A.C. Eringen, Nonlinear Theory of continuous Media. MacgrawHill. (1962).

V. A.C. Eringen, J.Math. Mech. 16,(1966).

VI. P.R. Sengupta and S.K. Paul. Phy. Sci. 22, (1988), 4.

VII. S.K Paul and P.R. Sengupta,(1967)- Rev. Roum. Sci. Techn. Mech. Appl., 32,(1967) 2.

VIII. P.C. Ghosh and P.R. Sengupta,(1963)- North Bengal Univ. Review, (Sci. & Techno.) 4, (1963) 2.

IX. P.R. Sengupta and P.C. Ghosh, Journal of Technology, XXVIII. (1982), I

X. P.R. Sengupta and S.K. Paul, Journal of Technology, XXVIII, (1982),2

Supriya Panja View Download