INVESTIGATION OF EVAPORATION AND CONDENSATION PROCESS OF INDUCED FLOW USING STEAM EJECTOR

Authors:

Shahad Jamal,Akram W. Ezzat,

DOI NO:

https://doi.org/10.26782/jmcms.2021.02.00007

Keywords:

Flash evaporation,Induced flow,Nozzle,Subsonic,Ejector,

Abstract

The research aims to understand the design parameters of steam ejector nozzle on the performance of flash evaporation induced by the effect of a steam jet passing through it. The research concentrates on studying the effect of ejector nozzle outlet diameter on induced flow from preheated water in a specified evaporator using a subsonic ejector. The thermal energy extracted from the condensed steam mixture in the condenser is used to heat the water in the evaporator. The experimental tests investigate the effect of nozzle geometry on the induced evaporation process by changing nozzle outlet diameter while keeping the pressure of evaporator, condenser and primary steam constant. The experimental results proved that both primary and secondary steam mass flow rates increase versus nozzle outlet diameter, while the entrainment ratio of secondary to primary steam flow rates decreases due to the restricted increase of the secondary steam mass flow rate. The mathematical model prepared to simulate the behaviour of the subsonic ejector is validated using the comparison between experimental and theoretical results. The mathematical model showed that maximum entrainment of 0.57 is obtained at a primary steam pressure of 2 bars when the nozzle outlet diameter is fixed at 1.5 mm, while minimum entrainment ratio of 0.17 is estimated at 1.5 bar pressure related to primary steam when the nozzle outlet diameter is fixed at 2.5mm. The authors recommend defining nozzle geometrical parameters according to the operating conditions of the experimental test rig to enhance ejector efficiency.

Refference:

I. A. Ezzat et al., Investigation of steam jet flash evaporation with solar thermal collectors in water desalination systems, Thermal science and engineering progress, 20 (2020) 100720.
II. Antonio, et al., Thermodynamic modeling of an ejector with compressible flow by one dimensional approach, Entropy 14 (4) (2012) 599–614.
III. kavous Ariafar . Effect of Nozzle Geometry on a Model Thermo compressor Performance – a Numerical Evaluation. Journal ISME 2012
IV. Lam Ratna Raju, Ch. Pavan Satyanarayana, Neelamsetty Vijaya Kavya, : AN APPROACH FOR OPTIMISING THE FLOW RATE CONDITIONS OF A DIVERGENT NOZZLE UNDER DIFFERENT ANGULAR CONDITIONS, J. Mech. Cont.& Math. Sci., Vol.-15, No.-7, July (2020) pp 608-625.
V. M. Dennis. Solar Cooling Using Variable Geometry Ejectors, 2009, Croll Reynold Steam Ejectors, 2018, https://croll.com/vacuum-systems/applications/
VI. Mehran Ahmadi , Poovanna Thimmaiah ,Majid Bahrami ,Khaled Sedraoui, Hani H. Sait and Ned Djilali . Experimental and numerical investigation of a solar eductorassisted low-pressure water desalination system. Journal Science Bulletin 2016.
VII. N.M.K. Sarath Kumar, A. Vamsi Krishna, G. Shyam Mahesh, K. Bharath Kumar, M. Venkataiah, : CFD ANALYSIS OF RB211 AND CFM56 CHEVRON NOZZLES, J. Mech. Cont.& Math. Sci., Vol.-15, No.-7, July (2020) pp 405-415.

VIII. Natthawut Ruangtrakoon, Tongchana Thongtip, Satha Aphornratana, Thanarath Sriveerakul.CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle. International Journal of Thermal Sciences 2012.
IX. R. Kelso, Applied aerodynamics: compressible flow, PowerPoint Presentation (2018).
X. Seyedali Sabzpoushan, Masoud Darband I and Gerry E. Schneider. Numerical Investigation on the Effects of Operating Conditions on the Performance of a Steam Jet-Ejector. Journal international Conference of Fluid Flow.
XI. S. Han, et al., One-dimensional numerical study of compressible flow ejector, AIAA
XII. J. 40 (7) (2002) 1469–1473.
XIII. S. Liu, et al., Thermodynamic analysis of steam ejector refrigeration cycle, Int. Refrigeration Air Conditioning Conf. (2014) 2306–2307.
XIV. Szabolcs Varga, Armando C. Oliveira, Xiaoli Ma and Siddig A. Omer. Comparison of CFD and experimental performance results of a variable area ratio steam ejector. International Journal of Low-Carbon Technologies • June 2011
XV. Szabolcs Vargaa, Armando C. Oliveiraa and Bogdan Diaconua. Numerical assessment of steam ejector efficiencies using CFD. International journal of refrigeration, 2009.
XVI. Vineet V. Chandra and M.R. Ahmed. Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors. Journal of Elsevier, 2013.

View Download