GENERATION OF NEW OPERATIONAL MATRICES FOR DERIVATIVE, INTEGRATION AND PRODUCT BY USING SHIFTED CHEBYSHEV POLYNOMIALS OF TYPE FOUR

Authors:

Faiza Chishti,Fozia Hanif,Urooj Waheed,Yusra Khalid,

DOI NO:

https://doi.org/10.26782/jmcms.2021.02.00006

Keywords:

Operational matrix of derivative,Operational matrix of integration,Operational matrix of the product of Shifted Chebyshev polynomials of type four,

Abstract

While solving the fractional order differential equation the requirement of the higher-order derivative is obvious therefore, this paper gives a definite expression for constructing the operational matrices of derivative which is the direct method to find the derivative of higher-order according to the requirement of the total differential equation. The proposed work expands the Chebyshev polynomial of type four up to six degrees that could help get the accuracy for the numerical solution of a given differential equation. Previously Chebyshev polynomial of the third type has been used by cutting the domain from [-1, 1] to [0, 1]. This study also generates the integrational operational matrix for solving the integral equation as well as an integrodifferential equation by using the Chebyshev polynomial of type four and expand it up to six order and generate the matrix by cutting the domain from [-1, 1] to [0, 1].  This is the first attempt to generate an integrational operational matrix that has never been highlight nor generate by any researcher.  Another contribution of this paper is the generation of categorical expressions for the product of two Chebyshev vectors that will help in solving the differential equation of several kinds.

Refference:

I. A. Tatarczak, “An Extension of the Chebyshev’s polynomials”, Complex analysis operational theory, vol.10, pp: 1519-1533, 2016.
II. Azim Rivaz, Samane Jahan ara, “Two dimension Chebyshev polynomial for solving two dimensional integro differential equation”, Can kaya university journal of science, vol.12, 2015.
III. E. H. Doha,“On the coefficients of integrated expansions and integrals of ultra-spherical polynomials and their application for solving differential equations”, J. Comput. Appl. Math, vol. 139 (2), pp: 275–298, 2002.
IV. J. C. Mason, “Chebyshev polynomial approximations for the L-membrane eigenvalue problem”, SIAM J. Appl. Math, vol.15, pp: 172–186, 1967
V. J. She, T. Tang, L.L Wang “Spectral method, Algorithm, Analysis and Applications”, Springer 2011.
VI. J.A. Eleiwy, S.N Shihab,”Chebyshev polynomials and spectral methods for optimal control problem”, Engineering and Technology Journal, vol.27 (14), pp: 2642-2652, 2009.
VII. J.C Mason, “Chebyshev polynomial of third and fourth kind in approximation of indefinite integration and integral transform”, Journal of computational and applied Mathematics, Vol. 49, pp: 169-178,1993.
VIII. J.C Mason, David..C Handscomb, “Chebyshev polynomials”, Chapman and Hall, 2003.
IX. L. Fox and I. B. Parker, “Chebyshev Polynomials in Numerical Analysis”, Revised 2nd edition, Oxford University Press, Oxford, 1972.
X. L.M Delves ,J.L Mohammed, “Computational methods for integral equation”, Cambridge university press, 1985.
XI. M. R. Eslahchi, M. Dehghan and S. Amani,“The third and fourth kinds of Chebyshev polynomials and best uniform approximation”, Math. Computing Modeling, vol.55(5-6), pp: 1746–1762, 2012.
XII. Monireh norati, Sahlan Hadi,“Operational matrices of Chebyshev polynomial for solving singular volterra integral equation”, Springer open access publications, March 2017.
XIII. S. Shihab, Samaa Fouad, “Operational matrices of derivative and product for shifted Chebyshev polynomials of type three” Universe Scientific Publishing, vol. 6 (1), pp:14-17, 2019.
XIV. S.N Shihab , M.A Sarhan, New Operational Matrices of Shifted Chebyshev fourth wavelets, Elixir International Journal of applied Mathematics, vol. 69 (1), pp:23239-23244, 2014.
XV. S.N Shihab, M.A Sarhan “Convergence analysis of shifted fourth kind Chebyshev polynomials”,IOSR Journal of Mathematics, vol.10 (2), pp: 54-58, 2014.
XVI. S.N Shihab, T.N Naif, “On the Orthonormal Bernstein polynomial of eighth order”, Open science Journal of Mathematics and applications, vol.2 (2), pp:15-19, 2014.
XVII. Sotirios Notaris, “Integral formulae for Chebyshevs polynomial of type one and type two and the error term”, Mathematics of computation, vol.75, pp:1217- 1231, 2006.
XVIII. T.Kim ,D.S Kim ,D.V Dolgy, “Sums of finite product of Chebyshev polynomial of third and fourth kinds”, Advance Differential Equation, Article no.283, 2018.
XIX. W. Siyi, “Some new identities of Chebyshev polynomial and their applications”, Advance Differential Equation, 2015.1,pp: 1-8, 2015.
XX. Zhongshu, Yang, and Hongbo Zhang. “Chebyshev polynomials for approximation of solution of fractional partial differential equations with variable coefficients.” 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015). Atlantis Press, 2015

View Download