APPLICATION OF SWOT FOR CONSTRUCTION COMPANY QUALITY MANAGEMENT USING BUILDING INFORMATION MODELLING

Authors:

Phong Thanh Nguyen,Thu Anh Nguyen,Quyen Le Hoang Thuy To Nguyen,Vy Dang Bich Huynh,

DOI NO:

https://doi.org/10.26782/jmcms.2018.12.00003

Keywords:

Abstract

Building Information Modelling (BIM) has made considerable progress over the past few decades regarding information technology applied in the construction industry. In developed countries, governmental organizations and private companies had published many valuable and quality academic studies regarding BIM. However, few studies have mentioned the application of SWOT modelling to develop a strategy for applying the BIM 360 Field in construction and engineering companies. This paper presents an overview of the BIM 360 Field application in construction quality management. Suitable strategies could be used to enhance the quality assurance of construction project management.

Refference:

I.Azhar, S., Building information modelling (BIM): Trends, benefits, risks, and challenges for the AEC industry.Leadership and management in engineering, 2011. 11(3): p. 241-252.

II.Barlish, K. and K.Sullivan, How to measure the benefits of BIM—A case study approach.Automation in construction, 2012. 24: p. 149-159.

III.Bryde, D., M. Broquetas, and J.M. Volm, The project benefits of building information modelling (BIM).International journal of project management, 2013. 31(7): p. 971-980.

IV.Chong, H.-Y., J.S. Wong, and X. Wang, An explanatory case study on cloud computing applications in the built environment.Automation in construction, 2014. 44: p. 152-162.

V.Chuang, T.-H., B.-C. Lee, and I.-C. Wu. Applying cloud computing technology to BIM visualization and manipulation. in 28th International Symposium on Automation and Robotics in Construction. 2011.

VI.Cox, S., J. Perdomo, and W. Thabet. Construction field data inspection using pocket PC technology. in International Council for Research and Innovation in Building and Construction, CIB w78 conference. 2002.

VII.Davies, R. and C. Harty, Implementing ‘Site BIM’: a case study of ICT innovation on a large hospital project.Automation in Construction, 2013. 30: p. 15-24.

VIII.Eastman, C., et al., BIM handbook: A guide to building information modelling for owners, managers, designers, engineers and contractors. 2011: John Wiley & Sons.

IX.Fernandes, R.P.L., Advantages and disadvantages of BIM platforms on construction site.2013.X.Gleason, B.E., et al. The Use of Mobile Devices to Create Value in Quality Management Systems. in 50th ASC Annual International Conference Proceedings. 2014.

XI.Jiao, Y., et al., Towards cloud augmented reality for construction application by BIM and SNS integration.Automation in construction, 2013. 33: p. 37-47.

XII.Li, J., et al., A project-based quantification of BIM benefits.International Journal of Advanced Robotic Systems, 2014. 11(8): p. 123.

XIII.Lin, Y.-C. and Y.-C. Su, Developing mobile-and BIM-based integrated visual facility maintenance management system.The Scientific World Journal, 2013. 2013.

XIV.McGuire, B., et al., Bridge information modelling for inspection and evaluation.Journal of Bridge Engineering, 2016. 21(4): p. 04015076.

XV.Matthews, J., et al., Real time progress management: Re-engineering processes for cloud-based BIM in construction.Automation in Construction, 2015. 58: p. 38-47.

XVI.Moran, M.S., Assessing the benefits of a field data management tool.2012.

XVII.Nguyen, P.T., et al., Facilities management in high rise buildings using building information modeling.International Journal of Advanced and Applied Sciences, 2017. 4(2): p. 1-9.

XVIII.Nguyen, P.T., et al., Project success evaluation using TOPSIS algorithm.Journal of Engineering and Applied Sciences,2016. 11(8): p. 1876-1879.

XIX.Nguyen, P.T., et al., Ranking project success criteria in power engineering companies using fuzzy decision-making method.International Journal of Advanced and Applied Sciences, 2018. 5(8): p. 91-94.

XX.Phong, N.T. and N.L.H.T.T. Quyen, Application fuzzy multi-attribute decision analysis method to prioritize project success criteria.AIP Conference Proceedings, 2017. 1903(1): p. 070011.

XXI.Sawhney, A. and J.U. Maheswari, Design coordination using cloud-based smart building element models.International Journal of Computer Information Systems and Industrial Management Applications, 2013. 5: p. 445-453.

XXII.Tsai, Y.-H., S.-H. Hsieh, and S.-C. Kang, A BIM-enabled approach for construction inspection, in Computing in Civil and Building Engineering (2014). 2014. p. 721-728.

XXIII.Wang, J., et al., Integrating BIM and LiDAR for real-time construction quality control.Journal of Intelligent & Robotic Systems, 2015. 79(3-4): p. 417-432.

XXIV.Wong, J., et al., A review of cloud-based BIM technology in the construction sector.Journal of information technology in construction, 2014. 19: p. 281-291.

XXV.Wang, L.-C., Enhancing construction quality inspection and management using RFID technology.Automation in construction, 2008. 17(4): p. 467-479.

Author(s): Phong Thanh Nguyen, Thu Anh Nguyen, Quyen Le Hoang Thuy To Nguyen, Vy Dang Bich Huynh View Download