Journal Vol – 16 No -12, December 2021

IMPLEMENTATION OF NOVEL PGP ALGORITHM FOR ENCRYPTED GPS COMMUNICATION IN SMART CONTAINERS

Authors:

Mehrunnisa Saleem, Sheeraz Ahmed, Salman Ahmad, Safdar Nawaz Khan Marwat, Adnan Khan, Muhammad Aadil, Said Ul Abrar

DOI NO:

https://doi.org/10.26782/jmcms.2021.12.00001

Abstract:

The ability to check the location of both static and dynamic devices is improving increasingly with each passing day. To track locations of both static and dynamic machines, Global Positioning System (GPS) is used to exchange the location between the sender and the receiver. However, there are still challenges in the sage and secure transmission and reception of GPS location. The most common challenge is spoofing attacks data. This paper proposes the implementation of a Pretty Good Privacy (PGP) encryption algorithm to ensure the safety of GPS packets shared across the communication channels. The GPS location is first encrypted and subsequently sent across a communication channel, which is strong encryption and cannot be decrypted by an unauthorized user.

Keywords:

Spoofing,Encryption,Decryption,Global Positioning System (GPS),

Refference:

I. A. Broumandan, A. Jafarnia-Jahromi, V. Dehghanian, J. Nielsen, and G. Lachapelle, “GNSS spoofing detection in handheld receivers based on signal spatial correlation,” in Proceedings of the IEEE Position Location and Navigation Symposium (PLANS), 2012.
II. A. Dabir and A. Matrawy, “Bottleneck Analysis of Traffic Monitoring using Wireshark,” 2007 Innovations in Information Technologies (IIT), 2007, pp. 158-162, doi: 10.1109/IIT.2007.4430446.
III. A. Juels and T. Ristenpart, “Honey encryption: Security beyond the brute-force bound” in Advances in Cryptology-EUROCRYPT 2014, Springer, pp. 293-310, 2014.
IV. A. Juels and T. Ristenpart, “Honey encryption: Security beyond the brute-force bound” in Advances in Cryptology-EUROCRYPT 2014, Springer, pp. 293-310, 2014.
V. A. Ranganathan, H. Olafsd · ottir, and S. Capkun, “Spree: A spoofing · resistant gps receiver,” in Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking. ACM, 2016
VI. Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting Inside Attackers Using Decoy Documents, pp. 51–70 (2009)
VII. D. M. Akos, “Who’s afraid of the spoofer? GPS/GNSS spoofing detection via automatic gain control (AGC),” Navigation, 2012.
VIII. Developing GPS monitoring for the public transport fleet,” http://civitas. eu/measure/developing-gps-monitoring-public-transport-fleet.
IX. E. Schmidt, Z. Ruble, D. Akopian and D. J. Pack, “Software-Defined Radio GNSS Instrumentation for Spoofing Mitigation: A Review and a Case Study,” in IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 8, pp. 2768-2784, Aug. 2019, doi: 10.1109/TIM.2018.2869261.
X. F. L. Aryeh, B. K. Alese and O. Olasehinde, “Graphical analysis of captured network packets for detection of suspicious network nodes,” 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), 2020, pp. 1-5, doi: 10.1109/CyberSA49311.2020.9139672.
XI. G. GSA, “Market report issue 3,” 2017, https://www.gsa.europa.eu/.
XII. G. Mintsis, S. Basbas, P. Papaioannou, C. Taxiltaris, and I. Tziavos, “Applications of gps technology in the land transportation system,” European journal of operational Research, 2004.
XIII. J. Carn, ”Smart Container Management: Creating value from real-time container security device data,” 2011 IEEE International Conference on Technologies for Homeland Security (HST), 2011, pp. 457-465
XIV. J. Zhang, B. Chen, Y. Zhao, X. Cheng and F. Hu, ”Data Security and Privacy-Preserving in Edge Computing Paradigm: Survey and Open Issues,” in IEEE Access, vol. 6, pp. 18209-18237, 2018
XV. K. C. Zeng, Y. Shu, S. Liu, Y. Dou, and Y. Yang, “A practical gps location spoofing attack in road navigation scenario,” in Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications. ACM, 2017.
XVI. K. K. Songala, S. R. Ammana, H. C. Ramachandruni and D. S. Achanta, “Simplistic Spoofing of GPS Enabled Smartphone,” 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), 2020, pp. 460-463, doi: 10.1109/WIECON-ECE52138.2020.9397980.
XVII. K. Wesson, D. Shepard, J. Bhatti, and T. E. Humphreys, “An evaluation of the vestigial signal defense for civil GPS anti-spoofing,” in Proceedings of the ION GNSS Meeting, 2011.
XVIII. K. Wesson, M. Rothlisberger, and T. Humphreys, “Practical cryptographic civil GPS signal authentication,” Journal of Navigation, 2012.
XIX. M. A. Poltavtseva, D. P. Zegzhda and E. Y. Pavlenko, “High-performance NIDS Architecture for Enterprise Networking,” 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 2019, pp. 1-3, doi: 10.1109/ Black Sea Com. 2019.8812808.
XX. M. Abadi and B. Warinschi, “Password-based encryption analyzed” in Automata Languages and Programming, Springer, pp. 664-676, 2005.

XXI. M. G. Kuhn, “An asymmetric security mechanism for navigation signals,” in Information Hiding, 2005.
XXII. M. L. Psiaki, S. P. Powell, and B. W. O’Hanlon, “GNSS spoofing detection using high-frequency antenna motion and carrier-phase data,” in Proceedings of the ION GNSS+ Meeting, 2013..
XXIII. P. Misra and P. Enge, Global Positioning System: Signals, Measurements and Performance Second Edition. Lincoln, MA: Ganga-Jamuna Press, 2006.
XXIV. R. Das and G. Tuna, “Packet tracing and analysis of network cameras with Wireshark,” 2017 5th International Symposium on Digital Forensic and Security (ISDFS), 2017, pp. 1-6, doi: 10.1109/ISDFS.2017.7916510.
XXV. R. Jedermann, T. Poetsch and W. Lang, ”Smart Sensors for the Intelligent Container,” Smart SysTech 2014; European Conference on Smart Objects, Systems and Technologies, 2014, pp. 1-2
XXVI. S. C. Lo and P. K. Enge, “Authenticating aviation augmentation system broadcasts,” 2010.
XXVII. T. E. Humphreys, “Detection strategy for cryptographic GNSS antispoofing,” IEEE Transactions on Aerospace and Electronic Systems, 2013.
XXVIII. T. Humphreys, “Statement on the vulnerability of civil unmanned aerial vehicles and other systems to civil gps spoofing,” University of Texas at Austin (July 18, 2012), 2012.
XXIX. Tallapalli Chandra Prakash, Srinivas Samala, Kommabatla Mahender. : ‘ MULTICARRIER WAVEFORMS FOR ADVANCED WIRELESS COMMUNICATION’. J. Mech. Cont.& Math. Sci., Vol.-15, No.-7, July (2020) pp 252-259
XXX. US Department of Transportation: In-vehicle Performance Monitoring and Feedback,” https:// www. transportation.gov/ mission/health/ Invehicle -Performance – Monitoring-and-Feedback.
XXXI. W. Yue, Z. Xu and Z. Dapeng, “A High-reliability Network Architecture Based on Parallel Redundancy Protocol,” 2019 14th International Conference on Computer Science & Education (ICCSE), 2019, pp. 43-46, doi: 10.1109/ICCSE.2019.8845328.

View Download

APPLICATION OF ARTIFICIAL INTELLIGENCE (AI) TO ASSESS THE ROLE OF COVID-19 LOCKDOWN IN THE DOMAIN OF ESTUARINE ACIDIFICATION

Authors:

Sitangshu Roy, Nabonita Pal, Mourani Sinha, Sufia Zaman, Abhijit Mitra

DOI NO:

https://doi.org/10.26782/jmcms.2021.12.00002

Abstract:

The branch of computer science that deals with the simulation of variables with the help of a computer are termed Artificial Intelligence (AI). Here we attempt to predict the pace of acidification in the Digha coast of the Bay of Bengal based on available datasets of more than three decades. The ground zero observation on the data set reveals a decreasing trend of pH since 1984 with a sudden hike in premonsoon 2020, the period coinciding with the COVID 19 lockdown phase in the Indian sub-continent.

Keywords:

Artificial Intelligence (AI),Digha coast,aquatic pH,COVID 19 lockdown phase,

Refference:

I. Agarwal S., Fazli P., Zaman S., Pramanick P. and Mitra A, “Seasonal variability of acidification in major estuaries of Indian Sundarbans”, Global Journal of Engineering Science and Researches. vol. 6(4), pp: 493–498, 2019.
II. Banerjee K., Mitra A. and Bhattacharyya D. P., “Phytopigment level of the aquatic subsystem of Indian Sundarbans at the apex of Bay of Bengal”, Sea Explorers. vol. 6, pp: 39–46, 2003.
III. Banerjee K., Mitra A., Bhattacharyya D. P. and Choudhury A., “Role of nutrients on phytoplankton diversity in the north–east coast of the Bay of Bengal”, In Ecology and Ethology of Aquatic Biota (ed. Arvind Kumar), Daya Publishing House. pp: 102-109, 2002.
IV. Caldeira K. and M.E. Wickett, “Anthropogenic carbon and ocean pH.” Nature. pp: 425: 365, 2003.
V. Chakraborty S. K. and Choudhury, A., “Distribution of fiddler crabs in Sundarbans mangrove estuarine complex, India”, Proceedings of National Symposium on Biology, Utilization and Conservation of Mangroves. pp: 467–472, 1985.
VI. Costanza R., R. d’Arge, R. de Groot, S. Faber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, et al., “The value of the world’s ecosystem services and natural capital”, Nature. vol. 387, pp: 253–260, 1997.
VII. Costanza R., R. de Groot, P. Sutton, S. van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, and R.K. Turner, “Changes in the global value of ecosystem services”, Global Environmental Change. vol. 26, pp: 152–158, 2014.
VIII. Dutta P., Pramanick P., Biswas P., Zaman S. and Mitra A, “Reversing the phenomenon of acidification in the River Ganges: A ground – zero observation” NUJS Journal of Regulatory Studies. pp: 89-92, 2020.
IX. Feely R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero, “Impact of anthropogenic CO2 on the CaCO3 system in the oceans”, Science. vol. 305, pp: 362–366, 2004.
X. Heal G., “Valuing ecosystem services”, Ecosystems. vol. 3, pp: 24–30, 2000.
XI. Le Que´re´, C. R. Moriarty, R.M. Andrew, J.G. Canadell, S. Sitch, J.I. Korsbakken, P. Friedlingstein, G.P. Peters, et al., “Global carbon budget 2015”, Earth System Science Data. vol. 7, pp: 349–396, 2015.
XII. Liu J., T. Dietz, S.R. Carpenter, M. Alberti, C. Folke, E. Moran, A.N. Pell, P. Deadman, et al., “Complexity of coupled human and natural systems”, Science. vol. 317, pp: 1513–1516, 2007.
XIII. Mitra A. and Choudhury A., “Dissolved trace metals in surface waters around Sagar Island, India”, J. Ecobiol. vol. 6, pp: 135–139, 1994.
XIV. Mitra A. and Zaman S. In: “Basics of Marine and Estuarine Ecology”. Springer. ISBN 978-81- 322-2705-2. 2016.
XV. Mitra A. In: “Ecosystem services of mangroves: An overview”. Springer. ISBN 978-81-322- 2106-7, DOI: 10.1007/978-3-030-20595-9_1. 2020.
XVI. Mitra A. In: “Sensitivity of Mangrove ecosystem to changing Climate”. Springer. DOI: 10.1007/978-; 81-322-1509-7. pp: 323, 2013.
XVII. Mitra A., Banerjee K., Sengupta K. and Gangopadhyay A., “Pulse of climate change in Indian Sundarbans: a myth or reality”, Natl. Acad. Sci. Lett. vol. 32, pp: 1–7, 2009.
XVIII. Mitra A., Choudhury A. and Yusuf Ali Z., “Effects of heavy metals on benthic molluscan communities in Hooghly estuary”, Proc. Zool. Soc. vol. 45, pp: 481–496, 1992.
XIX. Mitra A., Ghosh P. B. and Choudhury, A., “A marine bivalve Crassostrea cucullata can be used as an indicator species of marine pollution”, Proceedings of National Seminar on Estuarine Management. pp: 177–180, 1987.
XX. Mukhopadhyay S. K., Biswas H., De T. K. and Jana, T. K., “Fluxes of nutrients from the tropical River Hooghly at the land– ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India”, J. Mar. Syst. vol. 62, pp: 9–21, 2006.
XXI. Ray Chaudhuri T., Fazli P., Zaman S., Pramanick P., Bose R. and Mitra A, “Impact of acidification on heavy metals in Hooghly Estuary”, Journal of Harmonized Research in Applied Sciences. vol. 2(2), pp: 91-97, 2014.

XXII. Roy Chowdhury T., Vyas P., Zaman S., Roy A. and Abhijit A, “Surface water pH: A proxy to acidification of estuarine water of Indian Sundarbans”, International Journal of Research and Analytical Reviews. vol. 6(1), pp: 1530-1535, 2019,
XXIII. Saha S. B., Mitra A., Bhattacharyya S. B. and Choudhury A., “Heavy metal pollution in Jagannath canal, an important tidal water body of the north Sundarbans aquatic ecosystem of West Bengal”, Indian J. Environ. Protection. vol. 19, pp: 801–804, 1999.
XXIV. Swathi B., Shoban Babu S., Monelli Ayyavaraiah. : ‘ARTIFICIAL INTELLIGENCE: CHARACTERISTICS, SUBFIELDS, TECHNIQUES AND FUTURE PREDICTIONS’. J. Mech. Cont.& Math. Sci., Vol.-14, No.-6, November-December (2019) pp 127-135. DOI : 10.26782/jmcms.2019.12.00010
XXV. Zeebe R.E., A. Ridgwell, and J.C. Zachos, “Anthropogenic carbon release rate unprecedented during the past 66 million years” Nature Geoscience. vol. 9, pp: 325–329, 2016.

View Download

A REVIEW ON TROPICAL CYCLONES

Authors:

Indrajit Ghosh, Sukhen Das, Nabajit Chakravarty

DOI NO:

https://doi.org/10.26782/jmcms.2021.12.00003

Abstract:

In this review, we have discussed the important recent theoretical research works on tropical cyclone dynamics. For mitigation of the devastating effect of tropical cyclones on coastal human civilization more and more advanced forecasting techniques are evolving nowadays with the increase in the frequency of generation of tropical cyclones. Thus it is of utmost necessity to understand the anatomy and physiology of the dynamics of tropical cyclones. So researchers explain the cyclonic system from a different point of view and that is highlighted in this review. So this review illustrates, in brief, some important developed models.

Keywords:

tropical cyclone,cyclostrophic flow,thermal wind,gale wind,wind gusts,storm surge,bathymetry,barotropic wind,baroclinic atmosphere,gradient wind,potential temperature,

Refference:

I. Arora, K., P. Dash, 2016: Towards dependence of tropical cyclone intensity on sea surface temperature and its response in a warming World.vMDPIArticlebClimate.,b4,30.b https://doi.org/10.3390/cli4020030.
II. Back, L. E., and C. S. Bretherton, 2005: The relationship between wind speed and precipitation in the pacific ITCZ. J. Clim.,18, 4317-4328.
III. Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds and convergence over the tropical oceans. J. Clim., 22, 4182-4196.
IV. Bretherton, C. S., E. M. Peters., and L. E. Back, 2004: Relationship between water vapour path and precipitation over tropical oceans. J. Clim., 17, 1517-1528. https://doi.org/10.1175/1520
V. Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Clim.,17, 2688-2701.
VI. Choi, Y., K. J. Ha, and H. Chang. H, 2015: Interdecadal change in typhoon genesis condition over the western north Pacific. Climate Dynamics., 45, 3243-3255. https://doi.org/10.1007/s00382
VII. Crinivec, N., R. K. Smith, G. Kilroy, 2015: Dependance of tropical cyclone intensification rate on sea surface temperature. . R. Meteorol. Soc., 141, 1618-1627. https://doi.org/10.1002/qj.2752.
VIII. Charney, J. G., and A. Eliasen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68-75. https://doi.org/10/1175/1520-0469(1964)021<0068:OTGOTH>2.0CO;2
IX. Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 48, 1666-1689.
X. De Maria, M., and J. Kaplan, 1994a: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather. Forecast.,19, 209-220.
XI. De Maria, M., and J. Kaplan, 1994b: Sea- surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Clim.,7, 1324-1334.
XII. De Maria, M., and J. Kaplan, 1999: An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and east north Pacific basins. Weather. Forecast.,14, 326-337.
XIII. Emanuel, K., 1986: An air-sea interaction theory for tropical cyclones. Part 1: steady state maintenance. J. Atmos. Sci.,43, 545-604.

XIV. Emanuel, K., 1991: The theory of hurricanes. Annu. Rev. Fluid. Mech., 23, 179-196.
XV. Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature., 436, 686-688. https://doi.org/10.1038/nature 03906
XVI. Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Clim., 20, 5497-5509. https://doi.org/10.1175/2009JCLI1571.1.
XVII. Emanuel, K., 2011. Time- dependent, axisymmetric model phrased in R-space. Tropical Meteorology, Lecture ocw.mit.edu/earth-atmospheric-and-planetary-sciences/12-811S1lecture-22.pdf.
XVIII. Estoque, M. A., 1962: Vertical and radial motions in a tropical cyclone. Tellus. A.,14, 394-402. https://doi.org/10.3402/tellusa.v14i4.9566.
XIX. Frank, W.M., 1977: The structure and energetics of the tropical cyclone I. storm structure. Mon. Wea. Rev., 105, 1119-1135.
XX. Ghosh, I., and N., Chakravarty, 2017: Extreme Weather Situations: Tropical Cyclones, some analytic perspectives. National Conference on Thunderstorms Socio-economic impacts, early warning and risk management by IMD and IMS.
XXI. Ghosh, I., and N., Chakravarty, 2018: Tropical cyclones: expressions for the velocity components and stability parameter. Nat. Haz., 94, 1293-1304. https://doi.org/10.1007/s11069-018-3477-7.
XXII. Ghosh, I., Das, S., and N., Chakravarty, 2020: Stellar scientillations and occultation: An astrophysical approach to the guiding turbulence in tropical cyclones. 1st International e-conference on Recent Advances in Physics and Material Science-2020. Darjeeling, West Bengal.
XXIII. Giaiotti, D. B., and F. Stel, 2006: The Rankine vortex model. https:// moodle2.units.it/pluginfile…. php/21382/mod…/1/rankine-vortex-notes.pdf. Accessed 4 October 2006…
XXIV. Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Wea. Rev., 112, 1669-1683. https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2
XXV. Gray, W. M., 1998: The formation of tropical cyclones. Meteorol. Atmos. Phys.,67, 37-69.
XXVI. Griffiths, D. J., 2005: Introduction to quantum mechanics, 2nd edn. Pearson Education, Chennai.
XXVII. Hack, J. J., and W. H. Schubert, 1986: Non-linear response of atmospheric vortices to heating by organized convection. J. Atmos. Sci., 43, 1559-1573.
XXVIII. Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, ii) Structure and budgets of the hurricane. Mon. Wea. Rev.,96, 617-636.
XXIX. Hawkins, H. F., and S. M. Imbembo, 1976: The structure of small intense hurricane Inez 1966. Mon. Wea. Rev., 104, 418-442.
XXX. Holton, J. R., 1972. An introduction to dynamic meteorology, 4th edition, Academic Press, london, p 535 .
XXXI. Kieu, C. Q., 2004a: An analytical theory for the early stage of the development of hurricanes: part-1. arXiv:physics/0407073. Accessed 2004 .
XXXII. Kieu, C. Q., 2004b: An analytical theory for the early stage of the development of hurricanes: part-2. arXiv:physics . Accessed 2004 .
XXXIII. Kieu, C. Q., 2008: Theoretical and numerical studies of tropical cyclone development. https://drum.lib.umd.edu/handle/1903/8597. Accessed July, 2008 .
XXXIV. Kilroy, G., M. T. Montgomery, and R. K. Smith, 2014: Why do model tropical cyclones intensify more rapidly at low latitudes ? J. Atmos. Sci.,72, 1783-1804. https://doi.org/10.1175/JASD-14-0044.
XXXV. Kilroy, G., M. T. Montgomery, and R. K. Smith, 2017: The role of boundary layer friction on tropical cyclogenesis and subsequent intensification. Meteorol. Soc.,143, 2524-2536. https://doi.org/10.1002/qj.3104
XXXVI. Koteswaram, P., 1967: On the structure of hurricanes in the upper troposphere and lower stratosphere. Mon. Wea. Rev., 95, 541-564.
XXXVII. Lala, S. et al., 2014: Mathematical explanation of earlier dissipation energy of tilted cyclone. . climatol. wea. fore.,2, 113. https://doi.org/10.4172/2332-2594.1005.
XXXVIII. La Seur, N. E., and H. F. Hawkins, 1963: An analysis of hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev,91, 694-709. https://doi.org/10.1175/1520-
XXXIX. Levina, V. G., and M. T. Montgomery, 2013: When will cyclonegenesis commence given a favorable environment. IUTAM Symposium on the dynamics of extreme events influenced by climate change.17, 59-68.
XL. Liu, Y., D. Chen, S. Li, P.W. Chan, and Q. Zhang, 2019: A three dimensional numerical simulation approach to access natural hazards. Nat. Haz.,96, 809-835.https://doi.org/10.1007/s. 069-019-03570-y.
XLI. Macbride, J. L., 1995: Tropical cyclone formation: Global perspectives on tropical cyclones: NMO/TDNO. 693, Rep-TCP-38, World Meteorological Organisation, PP. 63-105.
XLII. Mandal J. C., 1986: A model of tropical storm from temperature anomaly distributions. Mausam.,9, 367-374.
XLIII. Mallen K. J., M. T. Montgomery, and B. Wang, 2005: Re-examining the near core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. Atmos. Sci., 62, 408-425.
XLIV. Möler, J. D., and M. T. Montgomery, 2000: Tropical cyclone evolution via potential vorticity anomalies in a three dimensional balance model. J. Atmos. Sci., 57, 3366-3387.
XLV. Möler, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of hurricane Opal as diagonised from the GFDL model forecast. Mon. Wea. Rev., 130 , 1866-1881.
XLVI. Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci.,26, 3-40.
XLVII. Palmen, E., 1948: On the formation and structure of tropical cyclones. Geophysica.,3, 26-28.
XLVIII. Powell, M. D., A. T. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc., 88, 513-526. https://doi.org/10.1175/1520-0469 (2003) 060<2064:CFITIC>2.0.
XLIX. Raga, G. B., and D. J. Raymond, 2003: Convective forcing in the intertropical convergence zone of the Eastern Pacific. J. Atmos. Sci., 60, 2064-2082.
L. Raymond, D. J., S. L. Sessions, and . Fuchs, 2009, The mechanics of gross moist stability. J. Adv. Model. EarthSyst., 1, 1-20. https://doi.org/10.3894/JAMES.2009.1.9.
LI. Reasor, P. D., M. T. Montgomery, F. D. Marks. Jr, and J. F. Gamache, 2000: lowwavenumber structure and evolution of the hurricane inner core observed by airborne and dual- doppler rader. Mon. Wea. Rev.,6, 1653-1680. https://doi.org/10.1175/1520-0493(2000)128<1653:L. LII. Riehl, H., 1948: On the formation of typhoons. J. Meteor.,5, 247-265. LIII. Riehl, H., and J. Malkus, 1961: Some aspects of hurricane Daisy. Tellus., 2, 181-213. LIV. Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394. LV. Shapiro, L. J., and S. B. Goldenberg, 1998: Atlantic sea surface temperature and tropical cyclone formation. J. Clim.,11, 578-590. LVI. Smith, R. K., 2006: Tropical cyclone lecture notes. wwww.meteophysik.uni-munchen.de/ roger/Lectures/Tropical-Cyclones/060510-tropical-cyclones.pdf. Accessed 2 June, 2006 . LVII. Sundqvist, H., 1970: Numerical simulation of the development of tropical cyclones with a ten level model, I. Tellus.,22, 359-390. LVIII. Smith, R.K., and M.T. Montgomery, 2010: Hurricane boundary-layer theory. Q. J. R. Meteorol. Soc., 136, 1665-1670. LIX. Wang, L. X., 2016: Inter- comparison of extra tropical cyclone activity in nine reanalysis data sets. J. Atmos. Res., 181, 133-153. https:// doi.org/1016/j.atmosres.2016.06.010. LX. Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes-a review. Meteorol. Atmos. Phys., 87, 257-278. https://doi.org/10.1007/s00703003-0056-6. LXI. Wang, X., and D. L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane Part-1: Formulation and quasi-balanced flow. J. Atmos. Sci., 60, 1593-1607. LXII. Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97-116. https:// doi.org /10.1175/2009JAS3143.1. LXIII. Whitney, L.D., and J. S. Hobgood, 1997: The relationship between sea surface temperature and maximum intensities of tropical cyclones in the Eastern North Pacific Ocean. J. Clim., 10, 2921-2930. https://doi.org/10.1175/1520-0442(1997)010 <2921:TRBSST> 2.0.CO; 2https://texmex.mit.edu.
LXIV. Williams, G. J., R. K. Taft, B. D. Mcnoldy, and W. H. Schubert, 2013: Shock- like structures in the tropical cyclone boundary layer. Adv. Model. Earth Syst., 5, 338-353 https://doi.org/0.1002/jame.20028
LXV. Yanai, M., 1964: Formation of tropical cyclones. Rev. Geophys., 2, 367-414.
LXVI. Zhang, W., D. L. Zhang, and H. C. Lu, 2009: A theory for mixed vortex Rossby gravity waves in tropical cyclones. J. Atmos. Sci.,66, 3366-3381.https://doi.org/10.1175/2009JAS3060.1.
LXVII. Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks. Jr, 2013: As- symetric hurricane boundary layer structure form dropsonde composites in relation to the environment vertical wind shear. Mon. Wea. Rev., 141, 3968-3984. https://doi.org/10.1175/MWRD-12-00335.1.

View Download

IMPACT OF LOCKDOWN RESTRICTION OF COVID-19 ON SELECTIVE DISSOLVED HEAVY METALS IN COASTAL WEST BENGAL

Authors:

Nibedita Mukhopadhyay, Abhijit Mitra

DOI NO:

https://doi.org/10.26782/jmcms.2021.12.00004

Abstract:

              In this study, the effect of COVID-19 lockdown (2020) on dissolved heavy metal load (Zn, Cu, and Pb) in the coastal West Bengal were analyzed concerning the pre-COVID 19 phases (2016-2019). Two stations namely Shankarpur (Stn.1) and Haldia (Stn. 2) were selected for the study as both have two contrasting operational features. Haldia is an important port-cum-industrial complex whereas Shankarpur is an important fish landing station-cum-tourism site. The results showed that in both the stations there was a drastic fall in the metal concentrations due to lockdown implementation, but in Haldia, the aquatic health exhibits much improvement as in lockdown there was complete shut-down of the industries. ANOVA results also highlight significant variations between the two stations as well as between the pre COVID-19 (2016-2019) and COVID-19 lockdown phases.        

Keywords:

Dissolved heavy metals,Covid-19 lockdown,coastal West Bengal,ANOVA,

Refference:

I. Adla Rajesh, R. Shashi Kumar Reddy, M. Shiva Chander. : ‘SIGNIFICANT CHANGES IN INDIA DURING LOCK DOWN PERIOD WITH AN IMPACT OF COVID-19’. J. Mech. Cont.& Math. Sci., Vol.-15, No.-8, August (2020) pp 8-16
II. Agarwal, S., Pramanick, P., Mitra, A., “Alteration of dissolved Zinc concentration during COVID-19 lockdown phase in coastal West Bengal”, NUJS Journal of Regulatory Studies, Special Issue, pp: 51-56, 2020
III. Chakraborti, D., Adams, F., Mol, W. V., Irgolic, K. J., “Determination of trace metals in natural waters at nanogram per liter levels by electrothermal atomic absorption spectrometry after extraction with sodium diethyl-dithiocarbamate”, Analytica Chimica Acta, vol. 196, pp: 23-31, 1987
IV. Diffenbaugh, N. S., Field, C. B., Appel, E. A., Azevedo, I. L., Baldocchi, D. D., Burke, M., Burney, J. A., Ciais, P., Davis, S. J., Fiore, A. M., “The COVID-19 lockdowns: A window into the earth system”, Natures Reviews Earth & Environment, vol. 1, pp: 470–481, 2020
V. India: WHO Coronavirus Disease (COVID-19), Available online: https://covid19.who.int/region/searo/country/in, (accessed on 26th June, 2021)
VI. Izah, S. C., Chakrabarty, N., Srivastav, A. L., “A review on heavy metal concentration in potable water sources in Nigeria: Human health effects and mitigating measures”, Exposure and Health, vol. 8, no. 2, pp: 285–304, 2016
VII. Mitra, A., “Estuarine Pollution in the Lower Gangetic Delta”, Springer International, ISBN 978-3-319- 93305-4, vol. XVI, pp: 371, 2019
VIII. Mitra, A., “Sensitivity of Mangrove Ecosystem to Changing Climate”, Springer New Delhi Heidelberg New York Dordrecht London, 2013 edition, ISBN-10: 8132215087; ISBN-13: 978-8132215080, 2013
IX. Mitra, A., Zaman, S., “Basics of Marine and Estuarine Ecology”, Springer India, ISBN 978-81-322-2707-6, pp: 1-481, 2016
X. Mitra, A., Zaman, S., “Carbon sequestration by Coastal Floral Community, India”, The Energy and Resources Institute (TERI) TERI Press. ISBN 978-81-7993-551-4, 2014
XI. Olayinka-Olagunju, J. O., Dosumu, A. A, Olatunji-Ojo, A. M., “Bioaccumulation of Heavy Metals in Pelagic and Benthic Fishes of Ogbese River, Ondo State, South-Western Nigeria”, Water, Air, & Soil Pollution, vol. 232, no. 2, pp: 1–19, 2021
XII. The Financial Express, Lockdown 5.0 Guidelines in India (State-Wise): New Lockdown Extension Rules Announced, Night Curfew Relaxed. 30 May 2020, Available online: https://www.financialexpress.com/lifestyle/health/lockdown-5-0-guidelinesstate-wise-lockdown-extension-5-0-rules-latest-updates/1975135, (accessed on 26th June, 2021)
XIII. WHO. Coronavirus Disease (COVID-19) Situation Report-197, Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200804-covid-19-sitrep-197.pdf?sfvrsn=94f7a01d_2, (accessed on 26th June, 2021)
XIV. www.nltr.org

View Download

USE OF NON-LINEAR AUTOREGRESSIVE MODEL (NAR) TO FORECAST THE FUTURE HEALTH OF SHRIMP FARM

Authors:

Pallavi Dutta , Mourani Sinha, Prosenjit Pramanick, Sufia Zaman, Abhijit Mitra

DOI NO:

https://doi.org/10.26782/jmcms.2021.12.00005

Abstract:

Microbial load in terms of Total Coliform (TC) and Fecal Coliform (FC) were documented in the water of a shrimp culture farm at Malancha region of North 24 Parganas for a period of 36 years (1984-2019). The region receives the wastewater from the city of Kolkata. A steady hike in the microbial load (comprising of both total and fecal coliform) is noticed. The primary reason behind this rise of the microbial load is the run-off from the nearby landmasses that brings various types of wastes in the shrimp farm under investigation.  The sustainability of shrimp farms in this region is under question due to the huge microbial load as revealed from the output of NAR.

Keywords:

Total coliform (TC),fecal coliform (FC),shrimp culture,Malancha in North 24 Paraganas,Non-linear Auto Regressive model (NAR),

Refference:

I. Al-Harbi, A. H., “Faecal coliforms in pond water, sediments and hybrid
tilapia Oreochromis niloticus × Oreochromis aureus in Saudi Arabia”, Aquaculture Research, vol. 34, pp: 517–524, 2003
II. Atlas, R. M., Bertha, R., “Microbial ecology fundamentals and applications”, pp: 1–694, Benjamin: Commings Science Publishing, 1997
III. Avnimelech, Y., “Biofloc Technology – A Practical Guide Book”, 3rd Edn. Baton Rouge, LA: The World Aquaculture Society, pp: 258, doi: 10.13140/2.1.4575.0402, 2014
IV. Feng, P. C., Hartman, P. A., “Fluorogenic assays for immediate confirmation of Escherichia coli”, Applied and Environmental Microbiology, vol. 43, pp: 1320–1329
V. Greenberg, E., Clesceri, L. S., Eaton, A. D., “Standard method for examination of water and waste water (18th ed.). Washington: American Public Health Association, 1992
VI. Hartman, P. A. “The MUG test for E. coli in food and water”, Florence, Italy: On Rapid Methods and Automation in Microbiology & Immunology, 4–6 Nov., 1989
VII. Katayal, S., Rajkumer, T. M., “Environmental pollution”, New Delhi: Anmol Publications, pp: 54-63, 1991
VIII. Kudesia, V. P. “Water pollution”, 3rd revised ed., pp: 84–102, Meerut: Pragati Parkashan, 1990
IX. Mitra, A., “In: Sensitivity of Mangrove ecosystem to changing Climate”, Publisher Springer, India, DOI: 10.1007/978-81-322-1509-7, ISBN 978-81-322-1508-0 (Hardcover), 978-81-322-2882-0 (Softcover), pp: XIX 323, 2013
X. Mitra, A., “Status of coastal pollution in West Bengal with special reference to heavy metals”, Journal of Indian Ocean Studies, vol. 5, No. 2, 135 –138, 1998.
XI. Mitra, A., Banerjee, K., Chakraborty, R., Banerjee, A., Mehta, N., Berg, H., “Study on the water quality of the shrimp culture ponds in Indian Sundarbans”, Indian Science Cruiser, vol. 20, No. 1, pp: 34-43, 2006
XII. Mitra, A., Bhattacharyya, D. P., “Environmental issues of shrimp farming in mangrove ecosystem”, Journal of Indian Ocean Studies, vol. 11, No. 1, pp: 120-129, 2003.
XIII. Saha, S. B., Bhattacharyya, S. B., Basu, S., Mitra, A., Zamadar, Y. A., Choudhury, A., “Primary production and ecological efficiency of brackishwater shrimp culture in the vicinity of Sundarbans mangrove ecosystem”, Journal of Aquaculture in the Tropics, vol. 13, No. 2, pp: 151-158, 1998
XIV. Shadix, L. C., Eugene, W. R. “Evaluation of β-glucuronidase assay for the detection of Escherichia coli from environmental waters”, Canadian Journal of Microbiology, vol. 37, No. 12, pp: 908–911, 1991
XV. Zaman, S., Mukherjee, N., Banerjee, K., Mitra, A., “Microbial status of cultured shrimp from Indian Sundarbans”, Proceedings of the National Academy of Sciences of India, vol. 77 (B), No. III, pp: 288-291, 2007

View Download