A. Hakeem Memon,Javed Ali Samejo,Zubair A. Memon,Ashfaque A. Hashmani,



Flyback converter,boundary conduction mode (BCM),power factor correction (PFC),variable on-time control (VOTC),constant on-time control (COTC) (COTC).,


The boundary conduction mode (BCM) flyback converter is widely used topology because of numerous advantages like isolation between input and output circuits, minimum component count, low operating duct-cycle, and simple structure. However, it is not possible to achieve high input power factor (PF) as the on-time is constant. It causes the input current total harmonic distortion (THD) to not satisfy IEC61000-3-2 limits. For improving the PF of the BCM flyback converter, a variable on-time control (VOTC) method has been introduced. The implementation circuits are also discussed. For verifying the validity of proposed technique, the simulation results are carried out.


I. Compatibility, E. (2014). Part 3-2: Limits–Limits for harmonic current
emissions (equipment input current≤ 16 A per phase). International
Standard IEC, 61000-3-2.
II. García, O., Cobos, J. A., Prieto, R., Alou, P., &Uceda, J. (2003). Single
phase power factor correction: A survey. IEEE Transactions on Power
Electronics, 18(3), 749-755.
III. Ghanem, M. C., Al-Haddad, K., & Roy, G. (1996). A new control
strategy to achieve sinusoidal line current in a cascade buck-boost
converter. IEEE Transactions on Industrial Electronics, 43(3), 441-449.
IV. Jayahar, D., &Ranihemamalini, R. (2011, March). Inductor average
current mode control for single phase power factor correction buck-boost
converter. In 2011 International Conference on Emerging Trends in
Electrical and Computer Technology (pp. 274-279). IEEE.

V. Jayahar, D., Ranihemamalini, R., &Rathnakannan, K. (2016). Design and
Implementation of Single Phase AC-DC Buck-Boost Converter for
Power Factor Correction and Harmonic Elimination. International
Journal of Power Electronics and Drive Systems, 7(3), 1004.
VI. Langella, R., Testa, A., &Alii, E. (2014). IEEE recommended practice
and requirements for harmonic control in electric power systems.
VII. Lin, H. C., Chu, W. M., Tsai, C. H., & Su, W. C. (2018, May). A
digitally variable on-time controlled PFC flyback converter with primaryside
regulation. In 2018 7th International Symposium on Next Generation
Electronics (ISNE) (pp. 1-4). IEEE.
VIII. Memon, A. H., Yao, K., Chen, Q., Guo, J., & Hu, W. (2017). Variableon-
time control to achieve high input power factor for a CRM-integrated
buck–flyback PFC converter. IEEE Transactions on Power Electronics,
32(7), 5312-5322.
IX. Memon, A. H., & Yao, K. (2018). UPC strategy and implementation for
buck–buck/boost PF correction converter. IET Power Electronics, 11(5),
X. Memon, A. H., Baloach, M. H., Sahito, A. A., Soomro, A. M., &
Memon, Z. A. (2018). Achieving High Input PF for CRM Buck-
Buck/Boost PFC Converter. IEEE Access, 6, 79082-79093.
XI. Memon, A. H., Pathan, A. A., Kumar, M., Sahito, A. A J., & Memon, Z.
A (2019). Integrated buck-flyback converter with simple structure and
unity power factor. Indian Journal of Science and Technology, 12(17), 1-
XII. Memon, A. H., Memon, Z. A., Shaikh, N. N., Sahito, A. A &Hashmani,
A. A (2019). Boundary conduction mode modified buck converter with
low input current total harmonic distortion. Indian Journal of Science and
Technology, 12(17), 1-5
XIII. Memon, A. H., Memon, Z. A., Shaikh, N. N., Sahito, A. A &Hashmani,
A. A (2019). buck-buck/boost converter with high input power factor
and non-floating output voltage. International Journal of Computer
Science and Network Security, 19(4), 1-5
XIV. Moschopoulos, G., &Zheng, Y. (2006, July). Buck-boost type ac-dc
single-stage converters. In 2006 IEEE International Symposium on
Industrial Electronics (Vol. 2, pp. 1123-1128). IEEE.
XV. Quang, N. T., Chiu, H. J., Lo, Y. K., &Alam, M. M. (2013). Zero-voltage
switching current-fed flyback converter for power factor correction
application. IET Power Electronics, 6(9), 1971-1978.
XVI. Saifullah, K., Al Hysam, M. A., Haque, M. Z. U., Asif, S., Sarowar, G.,
&Ferdaous, M. T. (2017, November). Bridgeless AC-DC buck-boost

converter with switched capacitor for low power applications. In
TENCON 2017-2017 IEEE Region 10 Conference (pp. 1761-1765).
XVII. Singh, B., Singh, S., Chandra, A., & Al-Haddad, K. (2011).
Comprehensive study of single-phase AC-DC power factor corrected
converters with high-frequency isolation. IEEE transactions on Industrial
Informatics, 7(4), 540-556.
XVIII. Tang, W., Jiang, Y., Hua, G. C., Lee, F. C., & Cohen, I. (1993, March).
Power factor correction with flyback converter employing charge control.
In Proceedings Eighth Annual Applied Power Electronics Conference
and Exposition, (pp. 293-298). IEEE.
XIX. Wei, W., Hongpeng, L., Shigong, J., &Dianguo, X. (2008, June). A novel
bridgeless buck-boost PFC converter. In 2008 IEEE Power Electronics
Specialists Conference (pp. 1304-1308). IEEE.
XX. Yan, T., Xu, J., Zhang, F., Sha, J., & Dong, Z. (2014). Variable-on-timecontrolled
critical-conduction-mode flyback PFC converter. IEEE
Transactions on Industrial Electronics, 61(11), 6091-6099.

View | Download