Crystallographic and Morphological Studies of Nanocrystalline Hydroxyapatite Synthesized from Bovine Bone at Different Calcination Temperatures


Hatijah Binti Basri,Nazia Bano1,Suzi SalwahBinti Jikan,Sharifah Adzila,Dagaci Muhammad Zago,



Bovine Bone,Hydroxyapatite,Nanocrystalline,Calcination,Crystallographic properties,


Hydroxyapatite (HAP) is a calcium phosphate based bioceramics and a basic mineral component of teeth and bones of vertebrates. Its chemical and crystallographic features are similar to the inorganic segment of bone. In this paper, the comparative crystallographic and morphological analyses of nanocrystalline HAP extracted from bovine bone by calcination treatment were reported. The characterizations of the extracted HAP were carried out by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM). XRD analysis revealed that extracted HAP has a hexagonal crystal structure and crystallite size was in the range of 7.2-73.1 nm. Crystallinity degree and crystallite size gradually increased with the intensification of calcination temperature from 700-1100 °C. The lattice parameters and unit cell volume of extracted HAP were calculated using the standard least-squares equation and were analogous to reference ICCD (The International Centre for Diffraction Data) data. FESEM observation confirmed the hexagonal rod like structure. However, crystallographic and morphological properties of HAP extracted at different calcination temperatures (700°C, 900°C and 1100°C) are slightly different due to the presence of the important biological ions that are essential for bone growth. It is also revealed that the process of calcination prompts a change of the lattice parameter, resulting in lattice readjustment after the discharge of lattice carbonate and lattice water that cause an increase in crystallinity and crystal size.


I. Akram, M., Ahmed, R., Shakir, I., Ibrahim, W. A. W., & Hussain, R. (2014).
J. Mater. Sci., 49, 1461.
II. Bano, N., Jikan, S. S. B., Basri, H. B., Bakar, S. A. B. S. A., & Nuhu, A. H.
(2017). J. Sci. Technol., 9, 22.
III. Barakat, N. A. M., Khil, M. S., Omran, A. M., Sheikh, F. A., & Kim, H. Y.
(2009). J. Mater. Process. Technol., 209, 3408.

IV. Cengiz, B., Gokce, Y., Yildiz, N., Aktas, Z., & Calimli, A. (2008). Colloids
Surfaces A Physicochem. Eng. Asp., 322, 29.
V. Champion, E. (2013). Acta Biomater., 9, 5855.
VI. Cox, S. C., Jamshidi, P., Grover, L. M., & Mallick, K. K. (2014). Mater. Sci.
Eng. C, 35, 106.
VII. Fahami, A., Beall, G. W., & Betancourt, T. (2016). Mater. Sci. Eng. C, 59,
VIII. Fahami, A., Ebrahimi-Kahrizsangi, R., & Nasiri-Tabrizi, B. (2011). Solid
State Sci., 13, 135.
IX. Fahami, A., & Nasiri-Tabrizi, B. (2014). Ceram. Int., 40, 14939.
X. Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F., &
Figueiredo, H. (2010). Ceram. Int., 36, 2383.
XI. Hiller, J. C., Thompson, T. J. U., Evison, M. P., Chamberlain, A. T., & Wess,
T. J. (2003). Biomaterials, 24, 5091.
XII. Khoo, W., Nor, F. M., Ardhyananta, H., & Kurniawan, D. (2015). Procedia
Manuf., 2, 196.
XIII. Landi, E., Landi, E., Tampieri, A., Celotti, G., & Sprio, S. (2000). J. Eur.
Ceram. Soc., 20, 2377.
XIV. Lin, K., Wu, C., & Chang, J. (2014). Acta Biomater., 10, 4071.
XV. Liu, J., Li, K., Wang, H., Zhu, M., & Yan, H. (2004). Chem. Phys. Lett., 396,
XVI. Liu, Q., Matinlinna, J. P., Chen, Z., Ning, C., Ni, G., Pan, H., & Darvell, B.
W. (2015). Ceram. Int., 41, 6149.
XVII. Londoño-Restrepo, S. M., Ramirez-Gutierrez, C. F., Del Real, A., Rubio-
Rosas, E., & Rodriguez-García, M. E. (2016). J. Mater. Sci., 1.
XVIII. Miyaji, F., Kono, Y., & Suyama, Y. (2005). Mater. Res. Bull., 40, 209.
XIX. Murugan, R., & Ramakrishna, S. (2005). Cryst. Growth Des., 5, 111.
XX. Murugan, R., Rao, K. P., & Sampath Kumar, T. S. (2003). Bull. Mater. Sci.,
26, 523.
XXI. Niakan, A., Ramesh, S., Hamdi, M., Jahanshahi, A., Tan, C. Y., Ching, Y. C.,
& Tolouei, R. (2014). Mater. Res. Innov., 18, 117.
XXII. Ooi, C. Y., Hamdi, M., & Ramesh, S. (2007). Ceram. Int., 33, 1171.
XXIII. Pramanik, S., Hanif, A., Pingguan-Murphy, B., & Abu Osman, N. (2012).
Materials (Basel)., 6, 65.
XXIV. Rogina, A., Ivankovic, M., & Ivankovic, H. (2013). Mater. Sci. Eng. C, 33,
XXV. Shi, D. (2006). Introduction to Biomaterials. Characterization of
Biomaterials. Tsinghua University Press; World Scientific.
XXVI. Wang, X. Y., Zuo, Y., Huang, D., Hou, X. D., & Li, Y. B. (2010). Biomed.
Environ. Sci., 23, 473.

View | Download