GENERAL ANALYTICAL EXPRESSIONS FOR DEFLECTION AND SLOPE OF EULER-BERNOULLI BEAM UNDER DIFFERENT TYPES OF LOADS AND SUPPORTS

Authors:

Imran Ali Panhwar,Muhammad Mujtaba Shaikh,Rabinder Kumar,

DOI NO:

https://doi.org/10.26782/jmcms.2023.06.00003

Keywords:

Euler Bernoulli Beam,General analytical solution,Deflection,Slope,

Abstract

In this research paper, we solve the Euler-Bernoulli beam (EBB) differential equations by taking the general boundary conditions. Instead of finding a solution for the EBB model for a particular load and its particular boundary conditions, we derive the general analytical solution with general boundary conditions by using techniques of integration. The proposed general analytical solutions are neither load specific nor dependent on specific boundary conditions but can be used for any load and any boundary condition without having to integrate again and again. We have taken a general polynomial load function with general boundary conditions, and get the general analytical solution for the deflection and slope parameters of EBB. We find the direct solution for uniform distributed load and linearly varying load for a fixed beam.

Refference:

I. Barari, A., Kaliji, H. D., Ghadimi, M., & Domairry, G. (2011). : “Non-linear vibration of Euler-Bernoulli beams.” Latin American Journal of Solids and Structures, 8, 139-148. 10.1590/S1679-78252011000200002.
II. Beck, A. T., & da Silva Jr, C. R. (2011). “Timoshenko versus Euler beam theory: Pitfalls of a deterministic approach.” Structural Safety, 33(1), 19-25. 10.1016/j.strusafe.2010.04.006.
III. Bokhari, A. H., Mahomed, F. M., & Zaman, F. D. (2010). “Symmetries and integrability of a fourth-order Euler–Bernoulli beam equation.” Journal of Mathematical Physics, 51(5), 053517. 10.1063/1.3377045.
IV. Di Paola, M., Heuer, R., & Pirrotta, A. (2013). “Fractional visco-elastic Euler–Bernoulli beam.” International Journal of Solids and Structures, 50(22-23), 3505-3510. 10.1016/j.ijsolstr.2013.06.010.

V. Hafeezullah Channa, Muhammad Mujtaba Shaikh, and Kamran Malik (2022). “GENERAL ANALYTICAL SOLUTION OF AN ELASTIC BEAM UNDER VARYING LOADS WITH VALIDATION”, Journal of Mechanics of Continua and Mathematical Sciences, 17 (11): 54-62. 10.26782/jmcms.2022.11.00004.
VI. Malik, K., Shaikh, A. W., & Shaikh, M. M. “AN EFFICIENT FINITE DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF TIMOSHENKO BEAM MODEL.” Journal of Mechanics of Continua and Mathematical Sciences, 16(5):76-88. 10.26782/jmcms.2021.05.00007.
VII. Malik, K., Shaikh, M. M., & Shaikh, A. W (2021). “ON EXACT ANALYTICAL SOLUTIONS OF THE TIMOSHENKO BEAM MODEL UNDER UNIFORM AND VARIABLE LOADS.” Journal of Mechanics of Continua and Mathematical Sciences, 16 (5): 66-75. 10.26782/jmcms.2021.05.00006
VIII. Manoli, C. K., Papatzani, S., & Mouzakis, D. E. (2022). “Exploring the Limits of Euler–Bernoulli Theory in Micromechanics.” Axioms, 11(3), 142. 10.3390/axioms11030142.
IX. Nguyen, N. T., Kim, N. I., & Lee, J. (2015). “Mixed finite element analysis of nonlocal Euler–Bernoulli nanobeams.” Finite Elements in Analysis and Design, 106, 65-72. 10.1016/j.finel.2015.07.012.
X. Park, S. K., & Gao, X. L. (2006). “Bernoulli–Euler beam model based on a modified couple stress theory.” Journal of Micromechanics and Microengineering, 16(11), 2355. 10.1088/0960-1317/16/11/015
XI. Pisano, A. A., Fuschi, P., & Polizzotto, C. (2021). “Euler–Bernoulli elastic beam models of Eringen’s differential nonlocal type revisited within a $$\mathbf {C}^{0}-$$ C 0-continuous displacement framework.” Meccanica, 56(9), 2323-2337. doi.org/10.1007/s11012-021-01361-z.
XII. Wang, C. M. (1995). “Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions.” Journal of engineering mechanics, 121(6), 763-765. 10.1061/(ASCE)0733-9399(1995)121:6(763)
XIII. Yavari, A., & Sarkani, S. (2001). “On applications of generalized functions to the analysis of Euler–Bernoulli beam–columns with jump discontinuities.” International Journal of Mechanical Sciences, 43(6), 1543-1562. 10.1016/S0020-7403(00)00041-2.
XIV. Yu, H., & Yuan, Y. (2014). “Analytical solution for an infinite Euler-Bernoulli beam on a viscoelastic foundation subjected to arbitrary dynamic loads.” Journal of Engineering Mechanics, 140(3), 542-551. 10.1061/(ASCE)EM.1943-7889.00006
XV. Zamorska, I. (2014). “Solution of differential equation for the Euler-Bernoulli beam.” Journal of Applied Mathematics and Computational Mechanics, 13(4), 157-162. 10.17512/jamcm.2014.4.21
XVI. Zhang, P., Qing, H., & Gao, C. (2019). “Theoretical analysis for static bending of circular Euler–Bernoulli beam using local and Eringen’s nonlocal integral mixed model.” ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik and Mechanik, 99(8), e201800329. doi.org/10.1002/zamm.201800329.

View Download