The Stable Envelope of Gamma Modules

Authors:

Mehdi S.Abbas,Balsam M.Hamad,

DOI NO:

https://doi.org/10.26782/jmcms.2019.06.00032

Keywords:

injective gamma module,quasi-injective gamma module,fully stable gamma module,Г−multiplication Г−moduleI.Abbas.M. S, On fully stable module, Ph. D. thesis, University of Baghdad (1990). II. Balsam m. Hamad, Some remarks on fully stable gamma modules, to appear . III.Abbas .M. S,Saad .S. A, Shallal .E. A, Injective gamma module, Annals of pure and applied mathematics, vol.12, No.185-94, (2016). IV.Ameri .R, and R. Sudeghi, Gamma modules, Ration mathematica 20 (2010), 127-147. V.Abd Al-Hussain. H, Projective gamma modules and some related notions, Ph.D. Thesis ,Univ. of Mustansiriyah, (2017). VI.Barnes .W. E, On the ring of Nabusuwa, Pacin the case ofic J. math. 18 (1966)m 411-422. VII.Estaji.A. A, A. As. Estaji, A. S. Khorasani, S. Baghdari, On multiplication Γ – modules, Ratio mathematica 26 (2014), 21-38. VIII.X. Ma and J.zhan , Some characterizations of regular and semisimple -rings, kyungpook Math.j.,50(2010),pp.411-417. IX.Nobusuwa .N, on a generalization of the ring theory, Osaka J. Math, 1 (1964), 81-89. ,

Abstract

Presume R represents commutative -ring with identity and each R modules is worked on as unitary R modules. We expand in this paper the notion of the stable extension from the modules theory to that of gamma modules. We have studied the stable envelope S(M) of R - module M, and study the relation istween stable envelope, injective envelope E(M) and quasi-injective envelope Q(M) in the gamma modules, we obtain some results on S(M) where we have shown that S(M) is equal to 􀵣𝑎𝑛𝑛􀯋􀳨𝐸(𝑀):􀯋 𝑎𝑛𝑛􀯋􀳨 (𝑁)􀵧M , in case M represents Г − multiplication gamma modules.

Refference:

I.Abbas.M. S, On fully stable module, Ph. D. thesis, University of Baghdad (1990).

II. Balsam m. Hamad, Some remarks on fully stable gamma modules, to appear .

III.Abbas .M. S,Saad .S. A, Shallal .E. A, Injective gamma module, Annals of pure and applied mathematics, vol.12, No.185-94, (2016).

IV.Ameri .R, and R. Sudeghi, Gamma modules, Ration mathematica 20 (2010), 127-147.

V.Abd Al-Hussain. H, Projective gamma modules and some related notions, Ph.D. Thesis ,Univ. of Mustansiriyah, (2017). VI.Barnes .W. E, On the ring of Nabusuwa, Pacin the case ofic J. math. 18 (1966)m 411-422.

VII.Estaji.A. A, A. As. Estaji, A. S. Khorasani, S. Baghdari, On multiplication Γ – modules, Ratio mathematica 26 (2014), 21-38.

VIII.X. Ma and J.zhan , Some characterizations of regular and semisimple -rings, kyungpook Math.j.,50(2010),pp.411-417.

IX.Nobusuwa .N, on a generalization of the ring theory, Osaka J. Math, 1 (1964), 81-89.

Mehdi S.Abbas, Balsam M.Hamad View Download