A. P. Pushpalatha,S. Suganthi,




Zagreb indices,first Zagreb index,second Zagreb index,Fan graph,Barbell graph,Thorn graph,


A simple, finite and connected graph is denoted by G=(V,E). The primary Zagreb index, denoted as M1(G), characterizes the graph topologically by representing a squared degree sum of their vertices. Similarly, M2(G) denotes a second Zagreb index, that offers a topological measure of summing the degree of the product for adjacent vertices of graph G. We investigate a study of this topological indices M1(G)&M2(G) and got some interesting results also.


I. Akhtar, S., Imran, M., Gao, W. and Farahani, M. R., : ‘On topological indices of honeycomb networks of graphene networks. Hacet.’ J. Math. Stat. 2018, 47(1) 19-35. 10.15672/HJMS.2017.464

II. Balaban A. T., Motoc I., Bonchev D., Mekenyan O., : ‘Topological indices for structure activity correlations.’ Topics Curr Chem,1983, 114:21-55
III. Das K. C., : ‘On comparing Zagreb indices of graphs.’ MATCH commun math comput Chem, 2010, 63: 433-440.

IV. Das, K. C, : ‘Maximizing the sum of the squares of the degrees of a graph.’ Discrete Math., 285, (2004), 57–66.

V. Das, K. C., Gutman, I. and Zhou, B., : ‘New upper bounds on Zagreb indices.’ J. Math. Chem., 46, (2009), 514–521.

VI. De, N., : ‘The vertex Zagreb index of some graph operations.’ Carpathian Math. Publ. 2016, 8(2), 215-223.

VII. Eliasi M, Iranmanesh A, Gutman I., : ‘Multiplicative versions of first Zagreb index., MATCH Commun Math comput chem, 2012, 68:217-230.

VIII. Farahani, M. R. and Kanna, M. R. (2015), : ‘Generalized Zagreb Index of V-Phenylenic Nanotubes and Nanotori.’ Journal of Chemical and Pharmaceutical Research, 7(11), 241-245.

IX. Gutman I., : ‘Multiplicative Zagreb indices of trees. Bull Soc Math Banja luka, 2011, 18:17-23.

X. Gutman I., Das K. C., : ‘The first Zagreb index 30 years after.’ MATCH Commun Math Comput Chem, 2004, 50: 83-92.

XI. Gutman, I., : ‘Distance in thorny graph.’ Publ. Inst. Math Beograd 63 (1998) 31-36.

XII. Gutman I., : ‘Trinajstic, N.G.T and molecular orbitals totalπ-electron energy of alternant hydrocarbons.’ chem. phys. Lett, 1972,17, 535-535.

XIII. Gupta C. K., Lokesha,v. Shwetha B. S. and Ranjini.P. S., : ‘Graph operations on the symmetric division deg index of ghs.’ Palestine. J. Math. 2017, 6(1), 280-286.

XIV. Khalifcha, M. H., : ‘Yousefi-Azaria, H., Ashrafi, A. R., : ‘The first and second Zagreb indices of some graph operations.’ Discret. Appl. Math. 2009, 157, 804-811.

XV. Kexiang XU, : ‘The Zagreb indices of graphs with a given clique number.’ Applied Mathematics Letters , Volume 6, Issue 11 (2011), Pages1026-

XVI. Kinkar Ch. Das, Kexiang XU, Junki Nam., : ‘Zagreb indices of graphs’ Frontiers of Mathematics 2015.
XVII. K. C. Das, I. Gutman and B. Horoldagva (2012). : ‘Comparison between Zagreb indices and Zagreb coindices.’ MATCH Commun. Math. Comput. Chem., 68, pp.189 – 198
XVIII. K. C. Das, I. Gutman and B. Zhou (2009). : ‘New Upper Bounds on Zagreb Indices.’ J. Math. Chem.,46, pp. 514 – 521.

XIX. Lokesha, V., Deepika, T., : ‘Symmetric division deg index of tricyclic tetracyclic graphs.’ Int. J. Sci. Eng. Res.2016 ,7(5), 53-55.

XX. R. Pradeep Kumar, Soner Nandappa D., M. R. Rajesh Kanna., : ‘Redefined Zagreb, Randic, harmonic and GA indices of graphene.’ International Journal of Mathematical Analysis Vol.11, (2017), no.10, 493- 502. 10.12988/ijma.2017.7454

XXI. Sridhara G., Kanna , M. R. R. and Indumathi, R. S. : ‘Computation of topological indices of graphene.’ J. Nanometrial (2015) ID 969348.

XXII. K. Thilagavathi and A. Sangeetha Devi, : ‘Harmonious coloring and Proceedings of International Conference on Mathematical and Computer Science.’ Department of Mathematics Loyola College Chennai. (ICMCS 2009) Page no 50-52.

XXIII. F. Harary, : ‘Graph Theory.’ Addision Wesley, Reading Mass (1972).

XXIV. Yan, Z., Liu, H. and Liu, H., : ‘Sharp bounds for the second Zagreb index of unicyclic graphs.’ J. Math. Chem., 42, (2007), 565–574.

XXV. Zhou, B. and Gutman, I., : ‘Further properties of Zagreb indices.’ MATCH Commun. Math. Comput. Chem., 4, (2005),233–239.

View Download