Shikha Singh,Manuj Darbari,Gaurav Kant Shankhdhar,



OCL,Multi Agent System,e-commerce application,customer query based cluster,Affinity Propagation Algorithm,


The authors have devised a multi-agent system for management of enormous queries by the customers in an e-commerce website. The paper discusses the phenomenon of having a first visit registration of the customers, extracting the preferences as specified by the customers, accepting the queries for products and applying Affinity Propagation Algorithm in order to obtain the clusters. These clusters are the groups of customers who share common interests in buying products offered by the e-commerce website. So, now the system has segregated the similar types of queries into distinct groups. The queries are then prioritized according to the size of the clusters, that is, the biggest cluster containing maximum number of customers has greatest priority and so on. The queries belonging to same cluster (queries with same priority) are then passed through logical intervention using Object Constraint Language to maximize resource utilization and prevent double payment.   


I. Aßmann, U., Bartho, A., Bürger, C., Cech, S., Demuth, B., Heidenreich, F., Johannes, J., Karol, S., Polowinski, J., Reimann, J., Schroeter, J., Seifert, M., Thiele, M., Wende, C., Wilke, C.: Dropsbox: the dresden open software toolbox. Software & Systems Modeling 13(1) (2014) 133–169
II. Balsters, H.: Modelling database views with derived classes in the UML/OCL-framework. In: UML2003-The Unified Modeling Language. Modeling Languages and Applications. Springer (2003) 295–309
III. Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language into first-order predicate logic. In: Proceedings of VERIFY, Workshop at Federated Logic Conferences (FLoC). (2002)
IV. Case, Denise, and Scott DeLoach. “Applying an o-mase compliant process to develop a holonicmultiagent system for the evaluation of intelligent power distribution systems.” International Workshop on Engineering Multi-Agent Systems. Springer, Berlin, Heidelberg, 2013.
V. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL constraints. In: Proceedings of the Workshop The Pragmatics of OCL and Other Textual Specification Languages. Volume 24., ECEASST (2009)
VI. DeLoach, Scott A. “O-MaSE: an extensible methodology for multi-agent systems.” Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg, 2014.
VII. Demuth, B., Hussmann, H.: Using UML/OCL constraints for relational database design. In: «UML»99 – The Unified Modeling Language. Springer (1999) 598–613
VIII. Egea, M., Dania, C., Clavel, M.: MySQL4OCL: A stored procedure-based MySQL code generator for OCL. Electronic Communications of the EASST 36 (2010)
IX. Egea, M., Dania, C.: Sql-pl4ocl: an automatic code generator from ocl to sql procedural language. Software & Systems Modeling (May 2017)
X. Franconi, E., Mosca, A., Oriol, X., Rull, G., Teniente, E.: Logic foundations of the ocl modelling language. In: European Workshop on Logics in Artificial Intelligence, Springer (2014) 657–664
XI. Kant, Gaurav, et al. “Legal Semantic Web-A Recommendation System.” International Journal of Applied Information Systems (IJAIS) 7 (2014).
XII. Li, Peixin, et al. “Dynamic equivalent modeling of two-staged photovoltaic power station clusters based on dynamic affinity propagation clustering algorithm.” International Journal of Electrical Power & Energy Systems 95 (2018): 463-475.
XIII. Mandel, L., Cengarle, M.V.: On the expressive power of the object constraint language OCL. In: FM’99 — Formal Methods. Volume 1708 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (1999) 854–874
XIV. Oriol, X., Teniente, E., Tort, A.: Computing repairs for constraint violations in uml/ocl conceptual schemas. Data & Knowledge Engineering 99 (2015) 39–58
XV. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2) (2012) 13
XVI. Saadatpour, Mohsen, et al. “Priority-based Clustering in Weighted Graph Streams.” Journal of Information Science & Engineering 34.2 (2018).
XVII. Shang, Ronghua, et al. “A multiobjective evolutionary algorithm to find community structures based on affinity propagation.” Physica A: Statistical Mechanics and its Applications 453 (2016): 203-227.
XVIII. Shankhdhar, Gaurav Kant, and ManujDarbari. “Introducing Two Level Verification Model for Reduction of Uncertainty of Message Exchange in Inter Agent Communication in Organizational-Multi-Agent Systems Engineering, O-MaSE.” IOSR Journal of Computer Engineering (IOSR-JCE) IOSR Journal of Computer Engineering (IOSR-JCE) 19 (2017): 08-18.
XIX. Shankhdhar, Gaurav Kant, and ManujDarbari. “Building custom, adaptive and heterogeneous multi-agent systems for semantic information retrieval using organizational-multi-agent systems engineering, O-MaSE.” 2016 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Fall). IEEE.
XX. Shankhdhar, Gaurav Kant, et al. “Fuzzy Approach to Select Most Suitable Conflict Resolution Strategy in Multi-Agent System.” 2019 International Conference on Cutting-edge Technologies in Engineering (ICon-CuTE). IEEE, 2019.
XXI. Shankhdhar, Gaurav Kant, et al. “Implementation of Validation of Requirements in Agent Development by means of Ontology” International Journal of Computer Sciences and Engineering 6 (7), 2018
XXII. Shikha Singh, ManujDarbari, “Logical Intervention in the Form of Work Breakdown Strategy using Object Constraint Language for e-Commerce Application” , International Journal of Advanced Computer Science and Applications, vol.11, No.3, pp-266-271, 2020.

XXIII. Shikha Singh, ManujDarbari, “Ontological Representation of the UML/OCL Models and Their Verifications”, International Journal of Future Generation Communication and Networking, Vol.13, No.1, pp.940-951, 2020.
XXIV. Sun, Leilei, et al. “Fast affinity propagation clustering based on incomplete similarity matrix.” Knowledge and Information Systems 51.3 (2017): 941-963.
XXV. Wei, Zexian, et al. “A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection.” Knowledge-Based Systems 116 (2017): 1-12.

View Download