D. P. Acharya,Indrajit Roy,H. S. Chakraborty,



visco-elastic plate,initial stress,magnetic fluid,wave propagation,


The aim of the present paper is to investigate the propagation of waves in a magneto­visco-elastic initially stressed electrically conducting plate of finite thickness involving time rate of strain and stress of higher order. The initial stress is assumed to be of the nature of hydrostatic tension or compression. The normal mode analysis is used to obtain the wave velocity equations for the waves propagated in the plate bounded by stress free plane boundaries. The wave velocity equations in different cases, obtained in this paper may be considered as more general in the sense that the results presented by other authors may be obtained as special cases in the absence of additional fields. Numerical computations are carried out and the effects of higher order viscoelasticity, magnetic field and initial stress on the phase velocity ratio are exhibited graphically.


1) X. Wang and H. L. Dai: Magnetothermodynamic stress and perturbation
of magnetic field vector in an orthotropic thermoelastic cylinder, Int. J. Engng. Sci, 42 (2004), 539-556.
M. A. Ezzat: Fundamental solution in generalized magneto thermoelasticity
with two relaxation times for perfect conductor cylindrical region, Int. J. Engng. Sci, 42 (2004), 1503-1519.
3) Rakshit M. and Mukhopadhyay B. : An electro-magneto-thermo-visco
elastic problem in an infinite medium with a cylindrical hole, Int. J. Engng. Sei, 43 (2005), 925-936.
4) Bakshi A., Bera R. K. and Debnath L.: A study of magneto-thermo elastic
problems with thermal relaxation and heat sources in a three-dimensional infinite rotating elastic medium, Int. J. Engng. Sci, 43 (2005), 1419-1434.
5) Roy Choudhuri S. K. : Magneto-thermo-elastic waves in an infinite
perfectly conducting solid without energy dissipation, J. Tech. Phys., 47 (2006), 63-72.
6) M. I. A. Othman and Y. Song: The effect of rotation on the reflection of
magneto-thermoelastic waves under thermoelasticity without energy dissipation, Acta Mech., 184 (2006), 189-204.
Higuchi M., Kawamura R. and Tanigawa Y.: Magneto-thermo-elastic
stresses induced by a transient magnetic field in a conducting solid circular cylinder, Int. J. Solids Struct., 44 (2007) 5316-5335.Acharya D. P. and Sengupta P. R.: Magneto-thermo-elastic waves in an
initially stressed conducting Layer, Gerlands Beitr. Geophys., 87 (1978), 229-239.
9) Das S. C., Acharya D. P. and Sengupta P. R.: Magneto visco-elastic surface
waves in stressed conducting media, Sildhani , 19 (1994), 337-346.
10) Wang J. and Slattery S. P.: Thermoelasticity without energy dissipation for initially stressed bodies, Int. J. Math. Math. Sci, 31 (2002), 329-337.
11) Othman M. I. A. and Song Y.: Reflection of plane waves from an elastic
solid half-space under hydrostatic initial stress without energy dissipation, Int. J. Solids Struct., 44 (2007), 5651-5664.
12) Sharma M. D.: Effect of initial stress on reflection at the free surface of anisotropic elastic medium, J. Earth Syst. Sci., 116 (2007), 537-551.
13) Selim M. M.: Torsional waves propagation in an initially stressed dissipative
cylinder, AppL Math. Sci. 1 (2007), 1419-1427.
14) Gupta S., Chattopadhyay A. and Kumari P. : Propagation of shear wave in anisotropic medium, Appi. Math. Sci. 1 (2007), 2699-2706.
15) Yu C. P. and Tang S. : Magneto-elastic waves in initially stress’ conductors, Z. Angew. Math. Phys., 17 (1966), 766-775.
16) De S. N. and Sengupta P. R. : Magneto-elastic waves and disturbances in initially stressed conducting media, Pure Appi. Geophys. 93 (1972), 41-54.
17) Roy Choudhuri S. K. and Banerjee M.: Magneto-viscoelastic plane waves
in rotating media in the generalized thermoelasticity II, Int. J. Math. Math. Sci, 11 (2005), 1819-1834.
18) Addy S. K. and Chakraborty N. R.: Rayleigh waves in a viscoelastic half
space under initial hydrostatic stress in presence of the temperature field, Int. J. Math. Math. Sci, 24 (2005), 3883-3894.
19) Song Y. Q., Zhang Y. C., Xu H. Y. and B. H. Lu: Magneto
thermoviscoelastic wave propagation at the interface between two micropolar viscoelastic media, Appl. Math. Compu., 176 (2006), 785-802.
20) Sharma J. N. and Othman M. I. A.: Effect of rotation on generalized
thermo viscoelastic Rayleigh-Lamb waves, Int. J. Solids Struct., 44 (2007), 4243-4255.
21) Yin-feng Z. and Zhong-min W. : Transverse vibration characteristics of axially moving viscoelastic plate, Appl. Math. Mech., 28 (2007), 209-218.
22) Rakshit M. and Mukhopadhyay B. : Visco-elastic plane waves in two
dimensions using generalized theory of thermo-elasticity, Bull. Cal. Math. Soc, 99 (2007), 279-292.
23) Voigt W. : Theortische student uberdie elasticitats verhalinisse krystalle, Abh. Ges. Wiss Goetting, 34 (1887).
24) Sengupta P. R., De N., Kar M. and Debnath L.: Rotatory vibration of
sphere of higher order viscoelastic solid, Int. J. Math. Math. Sci, 17 (1994), 799-806.
25) Othman M. I. A. : Effect of rotation on plane waves in generalized thermo
elasticity with two relaxation times, Int. J. Solids Struct., 41(2004), 2939¬2956.
26) Ezzat M. A., Othman M. I., El-Karamany A. S. : Electromagneto-
thermoelastic plane waves with thermal relaxation in a medium of perfect conductivity, J. Thermal Stresses, 24 (2001), 411-432.
27) Rayleigh F. W. : On the free vibrations of an infinite plate of homogeneous isotropic elastic material, Proc, Math. Soc.20 (1989), 225-234.
28) Lamb H. : On waves in an elastic plate, Proc. Roy. Soc. (London), 93 (1916), 114-128.
29) Eringen A. C. : On Rayleigh surface waves with small wave lengths, Applied and Engineering Sciences, 1 (1973), 11-17.
30) Acharya D. P. and Mandal Asit : Effect of rotation on Rayleigh surface
waves under the linear theory of non-local elasticity, Ind. J. Theor. Phys., 52(1) (2004).

D. P. Acharya, Indrajit Roy ,H. S. Chakraborty View Download