Numerical Solution And Global Error Estimation of Peristaltic Motion Of A Jhonson-Segalman Fluid With Heat and Mass Transfer In A Planer Channel


Mokhtar A. Abd El Naby,Nabil T. Mohammed El Dabe,



Johnson-Segalman fluid ,heat transfer ,mass transfer ,global error , peristaltic,


Runge-kutta-Marson Method and Newton Iteration in shooting and matching technique ware used to obtain the solutions of the system of the non-linear ordinary differential equations, which describe the two-dimensional flow of a Johnson-segalman fluid with heat and mass Transfer in a planer channel having walls that are transversely displaced by an infinite, harmonic traveling wave of large wavelength. Accordingly, we obtained the solutions of the momentum, the energy and the concentration distributions of the problem were illustrated graphically. Effect of some parameter of this problem such as, Weissenberg number W, total flux number F, Eckeret number, Prandtle number P, Soret number S, Schmidt S, Reaction number Rc, Reaction Parameter R, and reaction order m on these formula were were discussed. Also we estimate the global error for the numberical values of Solution by using Zadunaisky technique.


I. Hayat T., Wang Y., Hutter K., Asghar S, and Siddiqui A.M., “Peristaltic Transport of an Oldroyd_B Fluid in a planer channel”. Mathematical problems in Engineering, Vol.4 pp.347-376, (2004).

II. Ayukawa, K., Kawa T., and Kimura M, “Streamlines and path lines in peristaltic flow at high Reynolds number”. Bull. Japan Soc. Mech. Engrs. Vol.24, pp.948-955.(1981).

III. Hamin M., “The flow through a channel due to transversely Oscillating walls”, Israel  J. Tec., Vol.6, pp. 67-71, (1968).

IV. Hayat T.,  Wang Y., Siddiqui A.M. and Butter K.,  “Peristaltic motion of a Johnson-Segalman Fluid in a planer channel.”  Mathematical problems in Engineering, vol.1, pp. 1-23.(2003).

V.  Takabatake S. and Ayukawa K., “Numerical study of Two-dimensional peristaltic Flows”,  J.Fluid Mech., Vol.122, pp.439-465,(1982).

VI. Halfen LN., and Castenholz RW., “Gliding in the blue-green alga: a possible mechanism” Nature, Vol.225, pp.1163-1165, (1970).

VII. Kolkka RW., Malkus DS., Hansen MG., Lerly GR. and Worthing RA, “Spurt Phenomenon of the Johnson-Segalman Fluid and related models”, Journal of Non-Newtonian Fluid Mechanics, Vol.29, pp.303-335, (1988).

VIII. Mcleish TCB, and Ball RC., “A molecular approach to the spurt in polymer melt flow”, Journal of polymer Science (B) , Vol.24, pp.1735-1745, (1986).

IX. Malkus D.S., Nohel JA., and Ploher BJ., “Dynamics of Shear flow of a non-Newtonian fluid”, Journal of computational physics, Vol.87, pp.464-497, (1990).

X. Kalika DS., and Denn MM., “Well slip in and extrudate distortion in liner low-density Polyethylene”, Journal of Rheology, Vol.31, pp.815-834, (1987).

XI. Ramamurthy Av., “Wall slip in Viscous Fluids and influence of material of Construcation”, Journal of Rheology,Vol.30 pp.337-357, (1986).

XII. Kraynik AM., and Schowater WR., “Slip at the wall and extrudate roughness with aqueous solutions polyvinyl alcohol and sodium borate”. Journal of Rheology, Vol.25, pp.95-114, (1981).

Mokhtar A. Abd Elnaby, Nabil T.M Eldabe ,Abeer A.E. Mohammed View Download