Nibras N. mahmood,Mahmoad SH. Mahmoad,



Emission spectra,pulse energy,Nd-YAG laser,holmium,


In this work plasma emission spectra and atomic structure of the holmium target by Q-switched Nd:YAG laser (1064 nm) has been studied. This work was done theoretically and experimentally. Cowan code was used to get the emission spectra for different transition of the holmium target. In the experimental work, the influences of the laser pulse energy and pulse repetition rate on the emission lines intensity of the laser induced plasma spectrum by spectroscopic technique in air has been investigated. Three laser pulse energies (600, 700 and 800) mJ with repetition rate (5Hz, and 20Hz) are used .The result indicate that, the emission line intensities increase with increasing of the laser pulse energy and repetition rate. The holmium target can give a good emission spectra in the UV region (200-400) nm .The best emission spectra appeared when the laser pulse energy is 800mJ and 20 Hz repetition rate at λ= 341.54nm, 342.76nm, and 345.53nm with the maximum intensity of 80000 counts .


I. A. K. Aadim, (2015). Characterization of Laser induced cadmium plasma in
air. Iraqi Journal of Science, 56(3B), 2292-2296.
II. B. Cagnac, & C. J. Pebay-Peyroula, (1975). Modern atomic physics:
fundamental principles.

III. G. Başar, N. Al-Labady, B. Özdalgiç, F. Güzelçimen, A. Er, K. I. Öztürk, & S.
Kröger, (2017). Line Identification of Atomic and Ionic Spectra of Holmium in
the Near-UV. II. Spectra of Ho ii and Ho iii. The Astrophysical Journal
Supplement Series, 228(2), 17.
IV. G. M.Kompitsas, F.Roubani-Kalantzopoulou, I. Bassiotis, A. Diamantopoulou,
& A. Giannoudakos, (2000). Laser induced plasma spectroscopy (LIPS) as an
efficient method for elemental analysis of environmental samples.
V. G. Nave, (2003). Atomic transition rates for neutral holmium (Ho I). JOSA
B, 20(10), 2193-2202.
VI. H. G. Jihad, & A. K.Aadim, K (2018). Spectroscopic study the plasma
parameters for Pb doped CuO prepared by pulse Nd: YAG laser deposition. Iraqi
Journal of Physics, 16(38), 1-9.
VII. H. H. Murbat, & A. H. Hamza, (2017) The Influence of Nd: YAG Laser Energy
on Plasma Characteristics Produced on Si: Al Alloy Target in Atmosph
VIII. J. Gurell, M. G. Wahlgren, G. Nave, & F. J. Wyart, (2009). Wavelengths, energy
levels and hyperfine structure constants in Ho ii. Physica Scripta, 79(3), 035306.
IX. L.Fechner, (2016). High-Resolution Experiments on Strong-Field Ionization of
Atoms and Molecules: Test of Tunneling Theory, the Role of Doubly Excited
States, and Channel-Selective Electron Spectra. Springer.
X. M.Corsi, G.Cristoforetti, M.Hidalgo, S. Legnaioli, V.Palleschi, A.Salvetti, & C.
Vallebona, (2006). Double pulse, calibration-free laser-induced breakdown
spectroscopy: a new technique for in situ standard-less analysis of polluted
soils. Applied Geochemistry, 21(5), 748-755.
XI. N.Al-Labady, B. Özdalgiç, A. Er, F. Güzelçimen, K. I. Öztürk, S. Kröger & G.
Başar, (2017). Line identification of atomic and ionic spectra of holmium in the
near-UV. Part I. spectrum of Ho I. The Astrophysical Journal Supplement
Series, 228(2), 16.
XII. N. S. Mazhir, A. N. Abdullah, F. A. Rauuf, H. A. Ali, & I., (2018).
Effects of Gas Flow on Spectral Properties of Plasma Jet Induced by
Microwave. Baghdad Science Journal, 15(1), 81-86.
XIII. P. A. Rodgers, A. M. Rogoyski, S. J. Rose, Rutherford Appleton Laboratory
Report, RAL-89-127, Dec.1989.
XIV. R. d’Agostino, P. Favia, C. Oeh, & R. M.Wertheimer, (2005). Low‐temperature
plasma processing of materials: past, present, and future. Plasma Processes and
Polymers, 2(1), 7-15.
XV. R. D. Cowan, J. of Optical Society of America, 58 (1968) 808-818.
XVI. S. M. Mahmoad, (2018). The emission spectra and hydrodynamic properties of
Al plasma using Nd-YAG laser. Iraqi Journal of Physics (IJP), 16(38), 83-98

View Download