Faraz Mehmood,Asif R. Khan,Maria Khan,Muhammad Awais Shaikh,



C ̆ebys ̆evInequality,Probability Density Function,Cumulative Density Function.,


In present paper, we give generalisation of inequalities of eby ev type involving weights for absolutely continuous functions whose derivatives belong to  (Lebesgue space), where r ≥ 1. Our results recapture many established results of different authors. Applications are also given in probability theory.


Asif R. Khan, J. E. Pec ̆aric ́, M. Praljak, Weighted Montgomery’s Identities for Higher Order Differentiable Functions of Two Variables, , Rev. Anal. Numer. Theor. Approx., 42 (1) (2013), 49-71

Asif R. Khan, J. E. Pec ̆aric ́, M. Praljak, Generalized Cebysev and Ky Fans Identities and Inequalities, J. Math. Inequal.,10 (1) (2016), 185-204.

Asif R. Khan, J. E. Pec ̆aric ́, M. Praljak and S. Varos ̆anec, Genral linear Inequalities and Positivity/Higher Order Convexity, Monographs in inequalities, 12, Element, Zagreb, 2017.

Asif. R. Khan and Faraz Mehmood, Double Weighted Integrals Identities of Montgomery for Differentiable Function of Higher Order, Journal of Mathematics and Statistics, 15 (1) (2019), 112-121.

Asif R. Khan and FarazMehmood, Generalized Identities and Inequalities of C ̆ebys ̆ev and Ky Fan for ∇-convex function, Submitted.

B. G. Pachpatte, On Trapezoid and Gru ̈ss like integral inequalities, Tamkang J. Math., 34(4) (2003) 365-369.

B. G. Pachpatte, On Ostrowski-Gru ̈ss-C ̆ebys ̆ev type inequalities for functions whose modulus of derivatives are convex, J. Inequal. Pure and Appl. Math., 6(4) (2005). Art. 128.

B. G. Pachpatte, On C ̆ebys ̆ev type inequalities involving functions whose derivatives belong to Lp spaces, J. Inequal. Pure Appl. Math., 7(2) (2006). Art. 58.

D. S. Mitrinovic ́, J. E. Pec ̆aric ́ and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers Group, Dordrecht, 1993.

FarazMehmood, On Functions WithNondecreasing Increments, (Unpublished doctoral dissertation), Department of Mathematics, University of Karachi, Karachi, Pakistan, 2019.

FizaZafar, Some generalizations of Ostrowski inequalities and their applications to numerical integration and special means, (Unpublished doctoral dissertation). BahauddinZakariya University, Multan, 2010.

H. P. Heining and L. Maligranda, C ̆ebys ̆ev inequality in function spaces, Real Analysis Exchange, 17 (1991-1992) 211-247.

J. Pec ̆aric ́, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in science and engineering, vol. 187, Academic Press, 1992.

P. Cerone, OnC ̆ebys ̆ev Functional Bounds, Proceedings of the Conference on Differential and Difference Equations and Applications, Hindawi Publishing Corporation, 267-277.

P. L. C ̆ebys ̆ev, Sur les expressions approximatives des integrales par les auters prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882) 93-98.

S. S. Dragomir, Th. M. Rassias (Editors). Ostrowski Type Inequalities and Applications in Numerical Integration. Kluwer Academic Publishers, Dordrecht/Boston/London 2002.

Zheng Liu, Generalizations of some new C ̆ebys ̆evtype inequalities, J. Inequal. Pure Appl. Math, 8(1) (2007). Art. 13.

View Download