ESTIMATION OF PLASTIC FINE ALTERED RIVER BED PERMEABILITY USING ARTIFICIAL NEURAL NETWORKS

Authors:

Mohammad Adil,Mirza Muhammad,Raheel Zafar,Salma Noor,Neelam Gohar,Tanveer Ahmed Khan,Hamza Jamal,

DOI NO:

https://doi.org/10.26782/jmcms.2020.11.00006

Keywords:

River,permeability,plastic fines,neural network,

Abstract

The permeability of the soil is one of the most important properties of an unlined earthen canal or river bed. Using fine plastic particles has experimentally proven to reduce soil permeability, but the experimental study of the effect of a variety of types of plastic fines and their percentages in riverbed soil is tedious work to do. Estimation of permeability of riverbed soil by altering it with plastic fines using Artificial Neural Networks (ANNs) may reduce this effort. Particle size distributions (PSDs) have a significant influence on the permeability of bed soils. Being able to predict the permeability of bed soil by knowing the PSDs may provide an easy approach to know the loss of water by percolation. This study has investigated the quantitative relationships between permeability and PSD indices using ANNs. The aim was to build a mathematical model capable of predicting the permeability of bed soil by PSD indices of choice. A model was built using ANNs including PSD indices as input and permeability as output. The model stated that the coefficients of curvature and uniformity (Cc) and (Cu) and effective particle size (D50) may be used to predict the bed permeability. The computational model was able to predict the effect of variation of PSD indices on bed permeability, thus allowing increasing the efficiency of the river bed, to ensure maximum downstream water supply, lesser seepage and percolation and better productivity. The test result has confirmed the efficiency of the developed ANN tool in predicting the bed permeability for different PSD combinations.

Refference:

I. Abdul Farhan, Farman Ullah, Fawad Ahmad, Mehr E Munir, : Effect of Thin Layer on Bearing Capacity in Layered Profile Soil, J. Mech. Cont.& Math. Sci., Vol.-14, No.-3, May-June (2019) pp 597-608.
II. Alyamani, M. S. and Şen, Z. (1993) ‘Determination of Hydraulic Conductivity from Complete Grain-Size Distribution Curves’, Ground Water. Blackwell Publishing Ltd, 31(4), pp. 551–555. doi: 10.1111/j.1745-6584.1993.tb00587.x.
III. Amini, M. et al. (2005) ‘Neural network models to predict cation exchange capacity in arid regions of Iran’, European Journal of Soil Science. Blackwell Science Ltd, 56(4), pp. 551–559. doi: 10.1111/j.1365-2389.2005.0698.x.
IV. Arkin, H. and Colton, R. R. (1956) Statistical Methods, 4th Edition. New York: Barnes and Noble Inc.
V. ASTM D854-14 (2014), “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer,” ASTM International, West Conshohocken, PA, 2014, 10.1520/D0854-14,www.astm.org
VI. ASTM D698-12 (2012), “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)),” ASTM International, West Conshohocken, PA, 2012, 10.1520/D0698-12E02, www.astm.org
VII. ASTM D422-63 (2007), “Standard Test Method for Particle-Size Analysis of Soils,” ASTM International, West Conshohocken, PA, 2007, 10.1520/D0422-63R07, www.astm.org
VIII. ASTM D4318-17 (2017), “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” ASTM International, West Conshohocken, PA, 2017, 10.1520/D4318-17,www.astm.org
IX. ASTM D2434-68 (2006), “Standard Test Method for Permeability of Granular Soils (Constant Head) (Withdrawn 2015),” ASTM International, West Conshohocken, PA, 2006, 10.1520/D2434-68R06,www.astm.org
X. ASTM D5084-16a, (2016a), “Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter,” ASTM International, West Conshohocken, PA, 2016, 10.1520/D5084-16A,www.astm.org
XI. Benardos, P. G. and Vosniakos, G.-C. (2007) ‘Optimizing Feedforward Artificial Neural Network Architecture’, Eng. Appl. Artif. Intell. Tarrytown, NY, USA: Pergamon Press, Inc., 20(3), pp. 365–382. doi: 10.1016/j.engappai.2006.06.005.
XII. Boadu, F. K.(2000) ‘Hydraulic conductivity of soils from grain-size distribution: new models’, J. Geotech. Geoenviron., 126, 739–746, 2000.
XIII. Carman, P. C. (1956) Flow of gases through porous media. London: Butterworths Scientific Publications.
XIV. Carrier, W.D., (2003) ‘Goodbye, Hazen; hello, Kozeny-Carman’, Journal of Geotechnical and Geo environmental Engineering.
XV. Degroot, D. J., Ostendorf, D. W. and Judge, A. I. (2012) ‘In situ measurement of hydraulic conductivity of saturated soils’, Geotechnical Engineering Journal of the SEAGS & AGSSEA, 43, pp. 63–71.

XVI. Hazen, A. (1892) Some Physical Properties of Sands and Gravels: With Special Reference to Their Use in Filtration. Available at: https://books.google.com.pk/books?id=DW1cGwAACAAJ.
XVII. Holtz, R.D., Kovacks, W. D. and Sheahan, T. C., (2011) ‘An introduction to Geotechnical Engineering’: Prentice-Hall, Upper Saddle River, NJ, 853 p.
XVIII. Hunt, K. J. et al. (1992) ‘Neural networks for control systems—A survey’, Automatica, 28(6), pp. 1083–1112. doi: https://doi.org/10.1016/0005-1098(92)90053-I.
XIX. Ishaku, J. M., Gadzama, E.W. and Kaigama, U. (2011) ‘Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis’, Journal of Geology and Mining, Research Vol. 3(4) pp. 105-113.
XX. Jain, A. K., Mao, J. and Mohiuddin, K. M. (1996) ‘Artificial neural networks: a tutorial’, Computer, 29(3), pp. 31–44. doi: 10.1109/2.485891.
XXI. Jobro, J.D. (1992), ‘Estimation of hydraulic conductivity of soils from particle size distribution and bulk density data’, Journal of the American Society of Agricultural Engineers, 35(2), 557−560.
XXII. Khanlari, G. R. et al. (2012) ‘Prediction of shear strength parameters of soils using artificial neural networks and multivariate regression methods’, Engineering Geology. Elsevier B.V., 131–132, pp. 11–18. doi: 10.1016/j.enggeo.2011.12.006.
XXIII. Kenney, T.C., Lau, D. and Ofoegbu, G.I., (1984), ‘Permeability of compacted granular materials’, Canadian Geotechnical Journal, Vol. 21, pp. 726-729
XXIV. Kozeny, J. (1927) ‘Über kapillare Leitung des Wassers im Boden’, Akad. Wiss.Wien, 136, pp. 271–306.
XXV. Kavin kumar C, Heeralal M, Rakesh J Pillai, : NUMERICAL ASSESSMENT OF RAINFALL INDUCED SLOPE FAILURE, J. Mech. Cont.& Math. Sci., Vol.-15, No.-1, January (2020) pp 328-338
XXVI. Odong, J. (2007) ‘Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis’, Journal of American Science, 3(3), pp. 54–60. doi: 10.7537/marsjas040108.01.
XXVII. Onur, E. M. (2014) ‘Predicting the Permeability of Sandy Soils from Grain Size Distributions’, p. 137.
XXVIII. Qi, S. et al. (2015) ‘A new empirical model for estimating the hydraulic conductivity of low permeability media’, Proceedings of the International Association of Hydrological Sciences, 368(August 2014), pp. 478–483. doi: 10.5194/piahs-368-478-2015.

XXIX. Sarmadian, F., Mehrjardi, R. T. and Akbarzadeh, A. (2009) ‘Modeling of Some Soil Properties Using Artificial Neural Network and Multivariate Regression in Gorgan Province, North of Iran’, Australian Journal of Basic and Applied Sciences, 3(1), pp. 323–329.
XXX. Shepherd, R. G. (1989) ‘Correlations of Permeability and Grain Size’, Ground Water. Blackwell Publishing Ltd, 27(5), pp. 633–638. doi: 10.1111/j.1745-6584.1989.tb00476.x.
XXXI. Terzaghi, K. and Peck, R. B. (1997) ‘Soil Mechanics in Engineering Practice Third Edition’, New York, 48(1–2), pp. 149–150. doi: 10.1016/S0013-7952(97)81919-9.
XXXII. Tizpa, P. et al. (2015) ‘ANN prediction of some geotechnical properties of soil from their index parameters’, Arabian Journal of Geosciences, 8(5), pp. 2911–2920. doi: 10.1007/s12517-014-1304-3.
XXXIII. Von Twickel, A., Büschges, A. and Pasemann, F. (2011) ‘Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller’, Biological Cybernetics, 104(1), pp. 95–119. doi: 10.1007/s00422-011-0422-1.
XXXIV. Xing, L., & Pham, D. T. (1995), Neural networks for identification, prediction, and control. New York: Springer-Verlag New York, Inc.

View Download