Effect of back pressure and temperature on the densification behaviour of Al-Mg alloy

Authors:

N. B. Prakash Tiruveedula,T.CH. Anil Kumar,Pagidi Madhukar,Balasubramanian Ravisankar,S.Kumaran,

DOI NO:

https://doi.org/10.26782/jmcms.2020.07.00060

Keywords:

Consolidation,Pressure,Milling,Crystallite,Channel,Temperature,Powder,Density,Hardness,

Abstract

The current research has been aimed to study densification of Al-Mg alloy which was made with optimum sized Nanopowders through Equal Channel Angular Pressing (ECAP) technique. Al-Mg alloy nanopowder was synthesized through high energy ball milling process in the optimised condition. XRD was used to analyze the crystallite sizes of powders prepared at 10, 20, 30, 40 and 50 hrs in ball mill and the minimum crystallite size of 20.388nm achieved at 30hrs was found to be the best milling time. Consolidated specimens were prepared at three working conditions; without back pressure, with back pressure and with back pressure at high temperature (250°C). At each working condition, two passes were made to get better densification in the specimen. The specimens were analyzed for hardness, density, and microstructure. It was found that 92.11% of dense material was formed with a hardness of 64HRB.

Refference:

Aluminium Alloys – Aluminium 5083 Properties, Fabrication and Applications.https://www.azom.com/article.aspx?ArticleID=2804

II. Ayati, V.; Parsa, M. H.; Mirzadeh, H. Deformation of Pure Aluminum Along the Groove Path of ECAP-Conform Process: Deformation of Pure Aluminum Along the Groove Path…. Adv. Eng. Mater. 2016, 18 (2), 319–323. https://doi.org/10.1002/adem.201500251.
III. Bathula, S.; Anandani, R. C.; Dhar, A.; Srivastava, A. K. Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Nanocomposites Produced by High Energy Ball Milling and Spark Plasma Sintering. Mater. Sci. Eng. A 2012, 545, 97–102. https://doi.org/10.1016/j.msea.2012.02.095.
IV. Equal Channel Angular Pressing (ECAP): Part One.https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&LN=ES&NM=367
V. Ghadimi, S.; Sedighi, M.; Djavanroodi, F.; Asgari, A. Experimental and Numerical Investigation of a Cu–Al Bimetallic Tube Produced by ECAP. Mater. Manuf. Process. 2015, 30 (10), 1256–1261. https://doi.org/10.1080/10426914.2014.984210.
VI. Gudimetla, K.; Chaithanyakrushna, B.; Chandra Sekhar, K.; Ravisankar, B.; Kumaran, S. Densification and Consolidation of Al 5083 Alloy Powder by Equal Channel Angular Pressing. Appl. Mech. Mater. 2014, 592–594, 112–116. https://doi.org/10.4028/www.scientific.net/AMM.592-594.112.
VII. Haouaoui, M.; Karaman, I.; Harwig, K. T.; Maier, H. J. Microstructure Evolution and Mechanical Behavior of Bulk Copper Obtained by Consolidation of Micro- and Nanopowders Using Equal-Channel Angular Extrusion. Metall. Mater. Trans. A 2004, 35 (9), 2935–2949. https://doi.org/10.1007/s11661-004-0241-2.
VIII. Hasani Najafabadi, S. H.; Lotfi Neyestanak, A. A.; Daneshmand, S. Behavior Evaluation and Effects of Different Lubricants in ECAP Process. Ind. Lubr. Tribol. 2017, 69 (5), 701–707. https://doi.org/10.1108/ILT-05-2016-0097.
IX. Hilšer, O.; Rusz, S.; Szkandera, P.; Čížek, L.; Kraus, M.; Džugan, J.; Maziarz, W. Study of the Microstructure, Tensile Properties and Hardness of AZ61 Magnesium Alloy Subjected to Severe Plastic Deformation. Metals 2018, 8 (10), 776. https://doi.org/10.3390/met8100776.
X. Matvija, M.; Fujda, M.; Milkovič, O.; Vojtko, M.; Kočiško, R.; Glogovský, M. Microstructure Changes and Improvement in the Mechanical Properties of As-Cast AlSi7MgCu0.5 Alloy Induced by the Heat Treatment and ECAP Technique at Room Temperature. Adv. Mater. Sci. Eng. 2018, 2018, 1–11. https://doi.org/10.1155/2018/5697986.
XI. Paydar, M. H.; Reihanian, M.; Bagherpour, E.; Sharifzadeh, M.; Zarinejad, M.; Dean, T. A. Consolidation of Al Particles through Forward Extrusion-Equal Channel Angular Pressing (FE-ECAP). Mater. Lett. 2008, 62 (17–18), 3266–3268. https://doi.org/10.1016/j.matlet.2008.02.038.
XII. Pourdavood, M.; Sedighi, M.; Asgari, A. ECAP Process Capability in Producing a Power Transmission Bimetallic Rod. Mater. Manuf. Process. 2018, 33 (8), 873–881. https://doi.org/10.1080/10426914.2017.1376080.
XIII. Ramesh Kumar, S.; Ravisankar, B.; Sathya, P.; Thomas Paul, V.; Vijayalakshmi, M. Equal Channel Angular Pressing of an Aluminium Magnesium Alloy at Room Temperature. Trans. Indian Inst. Met. 2014, 67 (4), 477–484. https://doi.org/10.1007/s12666-013-0361-8.
XIV. Ravisankar, B. Equal-Channel Angular Pressing (ECAP). In Handbook of Mechanical Nanostructuring; Aliofkhazraei, M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp 277–297. https://doi.org/10.1002/9783527674947.ch13.
XV. Rusz, S.; Cizek, L.; Hadasik, E.; Donic, T.; Tylsar, S.; Salajka, M.; Kedron, J.; Klos, M.; Bobek, P. Combination of ECAP Process and Heat Treatment to Achieve Refining Structure of Selected Magnesium Alloys. In Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing; Marquis, F., Ed.; Springer International Publishing: Cham, 2013; pp 3275–3282. https://doi.org/10.1007/978-3-319-48764-9_404.
XVI. Segal, V.; Reznikov, V.; Dobryshevshiy, A.; Kopylov, V. Plastic Working of Metals by Simple Shear. Russ. Metall. Met. 1981, No. 1, 99–105.
XVII. Semenova, I. P.; Valiev, R. Z.; Langdon, T. G. High-Pressure Torsion and Equal-Channel Angular Pressing. In Nanocrystalline Titanium; Elsevier, 2019; pp 3–19. https://doi.org/10.1016/B978-0-12-814599-9.00001-8.
XVIII. Shanon, T. S.; Ahmed, N.; Bharath, M.; Valder, J.; Rijesh, M. Post-ECAP Ageing Treatment of Aluminum 6063 Alloy. Am. J. Mater. Sci. 2015, 5 (3C), 74–76. https://doi.org/10.5923/c.materials.201502.15.
XIX. Tański, T.; Snopiński, P.; Borek, W. Strength and Structure of AlMg 3 Alloy after ECAP and Post-ECAP Processing. Mater. Manuf. Process. 2017, 32 (12), 1368–1374. https://doi.org/10.1080/10426914.2016.1257131.
XX. Venkatachalam, P.; Ramesh Kumar, S.; Ravisankar, B.; Thomas Paul, V.; Vijayalakshmi, M. Effect of Processing Routes on Microstructure and Mechanical Properties of 2014 Al Alloy Processed by Equal Channel Angular Pressing. Trans. Nonferrous Met. Soc. China 2010, 20 (10), 1822–1828. https://doi.org/10.1016/S1003-6326(09)60380-0.
XXI. Witkin, D.; Lee, Z.; Rodriguez, R.; Nutt, S.; Lavernia, E. Al–Mg Alloy Engineered with Bimodal Grain Size for High Strength and Increased Ductility. Scr. Mater. 2003, 49 (4), 297–302. https://doi.org/10.1016/S1359-6462(03)00283-5.
XXII. Zhang, H.; Xu, C.; Xiao, W.; Ameyama, K.; Ma, C. Enhanced Mechanical Properties of Al5083 Alloy with Graphene Nanoplates Prepared by Ball Milling and Hot Extrusion. Mater. Sci. Eng. A 2016, 658, 8–15. https://doi.org/10.1016/j.msea.2016.01.076.

View Download