A HIGH GAIN AND HIGH BANDWIDTH REFLECTARRAY ANTENNA FOR 5G COMMUNICATION

Authors:

Abdul Azeem,Shahid Bashir,Awais Khan,Sayed Sabir Shah,

DOI NO:

https://doi.org/10.26782/jmcms.2021.05.00001

Keywords:

Reflectarrays,gain,efficiency,unit cell,microwave,millimeter-wave,5G,

Abstract

This paper presents the design of high gain and bandwidth reflectarray for 5G networks operating in Millimeter-wave (mmWave) at 28GHz and 38GHz. A polymer benzocylobutene (BCB) is used as substrate material having a dielectric constant of 2.65, and low tan δ ≤ 0.0008. The unit cell is optimized to achieve full phase reflection of 334o over the operating band. Enhanced gain, wider bandwidth and full phase reflection are achieved by making air holes in the substrate. A 15×15 elements reflectarray based on the optimized unit cell is designed to enhance the gain. The reflectarray is excited through horn feed having a gain of 15dB with a  feeding distance of 165mm and 00 offsets. A gain of 23dB was observed at lower operating frequency (i.e 28GHz) and 25dB at upper operating frequency (i.e  38GHz)with a bandwidth of 2GHz  at both operating frequencies.

Refference:

I. D. Spectrum, “Euro-5g – Supporting the European 5G Initiative,” 2017.
II. D. G. Berry, R. G. Malech, and W. A. Kennedy, “The Reflectarray Antenna,” IEEE Trans. Antennas Propag., vol. 11, no. 6, pp. 645–651, 1963, doi: 10.1109/TAP.1963.1138112.
III. D. Oloumi, S. Ebadi, A. Kordzadeh, A. Semnani, P. Mousavi, and X. Gong, “Miniaturized reflectarray unit cell using fractal-shaped patch-slot configuration,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 10–13, 2012, doi: 10.1109/LAWP.2011.2181478.
IV. F. Boccardi, T. L. Marzetta, and B. Labs, “Five Disruptive Technology Directions for 5G,” no. February, pp. 74–80, 2014.
V. M. Hashim Dahri and M. Y. Ismail, “Performance analysis of reflectarray resonant elements based on dielectric anisotropic materials,” Procedia Eng., vol. 53, pp. 203–207, 2013, doi: 10.1016/j.proeng.2013.02.027.
VI. M. Abd-Elhady, W. Hong, and Y. Zhang, “A Ka-band reflectarray implemented with a single-layer perforated dielectric substrate,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 600–603, 2012, doi: 10.1109/LAWP.2012.2201128.
VII. M. H. Jamaluddin et al., “Design, fabrication and characterization of a dielectric resonator antenna reflectarray in ka-band,” Prog. Electromagn. Res. B, vol. 25, no. 25, pp. 261–275, 2010, doi: 10.2528/PIERB10071306.
VIII. M. H. Jamaluddin et al., “A dielectric resonator antenna (DRA) reflectarray,” Eur. Microw. Week 2009, EuMW 2009 Sci. Prog. Qual. Radiofreq. Conf. Proc. – 39th Eur. Microw. Conf. EuMC 2009, vol. 6164, no. October, pp. 25–28, 2009, doi: 10.1109/EUMC.2009.5296579.
IX. M. H. Dahri, M. H. Jamaluddin, M. I. Abbasi, and M. R. Kamarudin, “A Review of Wideband Reflectarray Antennas for 5G Communication Systems,” IEEE Access, vol. 5, pp. 17803–17815, 2017, doi: 10.1109/ACCESS.2017.2747844.
X. Muhammad Sohaib Jamal, Samad Baseer, Iqtidar Ali, Farooq Faisal. : ‘ANALYSIS OF CHANNEL MODELLING FOR 5G MMWAVE COMMUNICATION’. J. Mech. Cont.& Math. Sci., Vol.-15, No.-9, September (2020) pp 278-293. DOI : 10.26782/jmcms.2020.09.00023
XI. S. Costanzo, F. Venneri, A. Borgia, and G. Di Massa, “A single-layer dual-band reflectarray cell for 5G communication systems,” Int. J. Antennas Propag., vol. 2019, pp. 8–11, 2019, doi: 10.1155/2019/9479010.

XII. S. W. Oh, C. H. Ahn, “Reflect-array element using variable ring with slot on ground plane,” Electron. Lett., vol. 45, doi: 10.1049/el.2009.2693.
XIII. S. V. Polenga, A. V. Stankovsky, R. M. Krylov, A. D. Nemshon, Y. A. Litinskaya, and Y. P. Salomatov, “Millimeter-wave waveguide reflectarray,” 2015 Int. Sib. Conf. Control Commun. SIBCON 2015 – Proc., pp. 0–3, 2015, doi: 10.1109/SIBCON.2015.7147335.
XIV. S. Costanzo, F. Venneri, and G. Di Massa, “c,” 13th Eur. Conf. Antennas Propagation, EuCAP 2019, no. EuCAP, pp. 1–3, 2019.
XV. S. Costanzo, I. Venneri, G. Di Massa, and A. Borgia, “Benzocyclobutene as Substrate Material for planar millimeter-wave structures: Dielectric characterization and application,” J. Infrared, Millimeter, Terahertz Waves, vol. 31, no. 1, pp. 66–77, 2010, doi: 10.1007/s10762-009-9552-0.
XVI. S. Costanzo, F. Venneri, A. Borgia, I. Venneri, and G. Di Massa, “60 GHz microstrip reflectarray on a benzocyclobutene dielectric substrate,” IET Sci. Meas. Technol., vol. 5, no. 4, pp. 134–139, 2011, doi: 10.1049/iet-smt.2010.0132.
XVII. S. Costanzo and F. Venneri, “Miniaturized fractal reflectarray element using fixed-size patch,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 1437–1440, 2014, doi: 10.1109/LAWP.2014.2341032.
XVIII. S. Costanzo, F. Venneri, G. Dimassa, A. Borgia, A. Costanzo, and A. Raffo, “Fractal reflectarray antennas: State of art and new opportunities,” Int. J. Antennas Propag., vol. 2016, 2016, doi: 10.1155/2016/7165143.
XIX. T. S. Rappaport et al., “Millimeter wave mobile communications for 5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013, doi: 10.1109/ACCESS.2013.2260813.
XX. T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-With a Focus on Propagation Models,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6213–6230, 2017, doi: 10.1109/TAP.2017.2734243.
XXI. Tallapalli Chandra Prakash, Srinivas Samala, Kommabatla Mahender. : ‘MULTICARRIER WAVEFORMS FOR ADVANCED WIRELESS COMMUNICATION’. J. Mech. Cont.& Math. Sci., Vol.-15, No.-7, July (2020) pp 252-259. DOI : 10.26782/jmcms.2020.07.00020
XXII. W. An, S. Xu, F. Yang, and S. Member, “A Metal-Only Re fl ectarray Antenna Using Slot-Type Elements,” vol. 13, pp. 1553–1556, 2014.
XXIII. W. Lee, M. Yi, J. So, and Y. J. Yoon, “Non-resonant conductor reflectarray element for linear reflection phase,” Electron. Lett., vol. 51, no. 9, pp. 669–671, 2015, doi: 10.1049/el.2015.0194.

View Download