Kintali Manohar,Kondamudi Srichandan,




Electromagnetics,Finite element analysis,Four-track electromagnetic launcher,Particle Swarm Optimization (PSO),


For linear motion applications, particularly in aerospace, this study outlines the creation of an essential Quadrupole Electromagnetic System (QES) as a substitute for a four-track electromagnetic launcher. The QES design is compared with a four-track system to address concerns regarding rail-armature contact sliding. In a QES, four coils provide a homogeneous electromagnetic field, resulting in a Lorentz force on the slider. The QES was designed using the three-dimensional modeling capabilities of the ANSYS software. The results of the magnetic properties show a high potential for scaling this model to various levels. Additionally, the QES power circuit was simulated using ANSYS Simplorer. The circuit uses silicon-controlled rectifiers (SCR) and a pulse-width modulation (PWM) pulse generator. A force of 4kN was achieved, and this paper presents the current and force plots in detail. The study includes finite element analysis, electromagnetic and current characteristics simulation, and monitoring of the skin and proximity effects. Performance is increased by optimizing the QES design parameters using Particle Swarm Optimization (PSO). The simulation results demonstrate the feasibility and scalability of the QES design.


I. Cassat A., et al., : ‘Direct linear drives: Market and performance status’. Proceedings of the 4th International Symposium on Linear Drives for Industry Applications. UK: Birmingham, 2003.Boldea I, Naser SA. Linear motion electromagnetic systems. (First). Wiley-Interscience Hardcover, Fair, United Kingdom 1985.
II. Cupertino Francesco, et al., : ‘Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors’. IEEE Transactions on Industry Applications. Vol. 45(5), pp. 1688-1696, 2009. 10.1109/TIA.2009.2027521
III. Dong Liang, Shuqi Sun, and Haiyang Wu., : ‘Study of capacitor parameters on the optimal trigger position of multipole field reconnection electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 49(7), pp. 2153-2160, 2021. 10.1109/TPS.2021.3084632
IV. Engel Thomas G., and Michael J. Veracka. : ‘The voltage–current scaling relationship and impedance of DC electromagnetic launchers’. IEEE Transactions on Plasma Science. Vol. 43(5), pp. 1271-1276. 2015. 10.1109/TPS.2015.2418053
V. Ferkova Z. et al., : ‘Electromagnetic design of ironless permanent magnet synchronous linear motor’. 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. IEEE, 2008. 10.1109/SPEEDHAM.2008.4581085
VI. Gordon Seamus, and Michael T. Hillery. ‘Development of a high-speed CNC cutting machine using linear motors’. Journal of Materials Processing Technology Vol. 166(3), pp. 321-329, 2005. 10.1016/j.jmatprotec.2003.08.009
VII. Gutierrez Hector et al., : ‘Non-contact DC electromagnetic propulsion by multipole transversal field: Numerical and experimental validation’. IEEE Transactions on Magnetics. Vol. 52(8), pp. 1-10, 2016. 10.1109/TMAG.2016.2553644
VIII. Kim Seog-Whan, Hyun-Kyo Jung, and Song-Yop Hahn. ‘Optimal design of multistage coilgun’. IEEE transactions on magnetics. Vol. 32(2), pp. 505-508, 1996. 10.1109/20.486539.
IX. Kleinkes Michael, Werner Neddermeyer, and Michael Schnell. ‘Improved method for highly accurate integration of track motions’. ICINCO-RA. 2006. 10.5220/0001203504690473
X. Kondamudi Sri Chandan et al., : ‘A novel type coil-multipole field hybrid electromagnetic launching system’. Results in Physics. Vol. 15, 102786 2019. 10.1016/j.rinp.2019.102786.
XI. Kondamudi Srichandan, and Mallikarjuna Rao Pasumarthi. : ‘Computations of magnetic forces in multipole field electromagnetic launcher’. International Journal of Mathematical, Engineering and Management Sciences. Vol. 4(3) pp. 761, 2019. 10.33889/IJMEMS.2019.4.3-059.
XII. Laithwaite Eric R. and Syed A. Nasar. : ‘Linear-motion electrical machines’. Proceedings of the IEEE. Vol. 58(4) pp. 531-542, 1970. 10.1109/PROC.1970.7692.
XIII. Lesquesne B., : ‘Permanent magnet linear motors for short strokes.’ Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting. IEEE. 1992. https://doi.org/10.1109/IAS.1992.244449.
XIV. Luo Wenbo et al., : ‘Connection pattern research and experimental realization of single stage multipole field electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 41(11), pp. 3173-3179, 2013. 10.1109/TPS.2013.2281240.
XV. Manohar Kintali, and Kondamudi Srichandan. : ‘Analysis of Quadrupole Magnetic Field Reluctance-Based Launcher With Different Coil Switching Patterns’. IEEE Transactions on Plasma Science. 2023) 10.1109/TPS.2023.3266515.
XVI. Manohar Kintali, and Kondamudi Srichandan. : ‘Design optimization of quad-pole electromagnetic ejection device using particle swarm optimization’. IEEE International Conference on Intelligent Systems, Smart and Green Technologies (ICISSGT). IEEE. 2021. 10.1109/ICISSGT52025.2021.00022.
XVII. Meinke R. B., C. L. Goodzeit, and M. J. Ball. : ‘Modulated double-helix quadrupole magnets’. IEEE transactions on applied superconductivity. Vol. 13(2), pp. 1369-1372, 2003. 10.1109/TASC.2003.812674.
XVIII. Musolino Antonino, Rocco Rizzo, and Ernesto Tripodi. : ‘Travelling wave multipole field electromagnetic launcher: An SOVP analytical model’. IEEE Transactions on Plasma Science. Vol. 41(5), pp. 1201-1208, 2013. https://doi.org/10.1109/TPS.2013.2246839.
XIX. Prasad Gajja, and Kondamudi Srichandan. : ‘Performance Evaluation on Two Wing Ring Type Armature with Inductive Type Electromagnetic Launching System’. IEEE 10th Power India International Conference (PIICON). IEEE, 2022. 10.1109/PIICON56320.2022.10045133.
XX. Shokair Isaac R., : ‘Projectile transverse motion and stability in electromagnetic induction launchers’. IEEE transactions on magnetics. Vol. 31(1), pp. 504-509, 1995. 10.1109/20.364641.
XXI. Thotakura Sandhya, Kondamudi Srichandan, and P. Mallikarjuna Rao. : ‘A novel configuration of multi-stage outrunner electromagnetic launching for aircraft catapult system’. Advances in Decision Sciences, Image Processing, Security and Computer Vision: International Conference on Emerging Trends in Engineering (ICETE). Vol. 2. Springer International Publishing, 2020. 10.1007/978-3-030-24318-0_44.
XXII. Xue Xinpeng, et al., : ‘A new electromagnetic launcher by sextupole rails: Electromagnetic propulsion and shielding numerical validation’. IEEE Transactions on Plasma Science. Vol. 45(9), pp. 2541-2545, 2017. 10.1109/TPS.2017.2728688.
XXIII. Yan Zhongming, et al., : ‘Study of single-stage double-armature multipole field electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 45(8), pp. 2381-2386, 2017. 10.1109/TPS.2017.2716421.
XXIV. Yang Zhiyong et al., : ‘An electromagnetic rail launcher by quadrupole magnetic field for heavy intelligent projectiles’. IEEE Transactions on Plasma Science. Vol. 45(7), pp. 1095-1100, 2017. 10.1109/TPS.2016.2646377.
XXV. Yingwei Zhu et al., : ‘Analysis and evaluation of three-stage twisty octapole field electromagnetic launcher’. IEEE Transactions on Plasma Science. Vol. 40(5), pp. 1399-1406, 2012. 10.1109/TPS.2012.2188530.
XXVI. Zabar Z. et al. : ‘Improved method for highly accurate integration of track motions’. IEEE transactions on magnetics. Vol. 25(1), pp. 627-631, 1989. 10.1109/20.22613.
XXVII. Zhu Yingwei et al., : ‘Multipole field electromagnetic launcher’. IEEE transactions on magnetics. : Vol. 46(7), pp. 2622-2627, 2010. 10.1109/TMAG.2010.2044416.

View Download