Absana Tarammim,Musammet Tahmina Akter,



Rucklidge system,Synchronization,Identical pair,Non-identical pair,Co-efficient Matrices,Active Control Algorithm,


This article explores the impact of synchronization, both identical and non-identical supporting systems with six different Co-efficient Matrices, on the Rucklidge chaotic system. Two paired chaotic systems are proposed to synchronize using the Active Control Algorithm (ACA). Six sets of different control functions originating from identical and non-identical Master/Drive systems. All synchronizing design demonstrates that six sets of different control functions are always perfectly applied and chaotic systems are significantly synchronized with six different co-efficient Matrices. Parameters are similar across identical pairings of chaotic systems however must be different for non-identical pairs.  The feasibility and efficacy of synchronizing the state variables are derived from the error dynamics coefficient matrix. We analyze the effectiveness of synchronized identical and non-identical approaches to explore which control functions would provide better results. The non-identical pair is formed utilizing the Harb-Zohdy chaotic system with a unique initial value.  In addition, numerical simulations are offered to validate and expand upon the theoretical findings.


I. A. Njah, U. Vincent. : ‘Chaos synchronization between single and double wells duffing–van der pol oscillators using active control’. Chaos, Solitons & Fractals. Vol.37(5),pp. 1356–136 (2008). 10.1016/j.chaos.2006.10.038
II. A. Tarammim, M. T. Akter. : ‘A comparative study of synchronization methods of rucklidge chaotic systems with design of active control and backstepping methods’. International Journal of Modern Nonlinear Theory and Application. Vol. 11(2), pp. 31–51, (2022). 10.4236/ijmnta.2022.112003
III. A. Tarammim, M. T. Akter. : ‘Shimizu–Morioka’s chaos synchronization: An efficacy analysis of active control and backstepping methods’. Frontiers in Applied Mathematics and Statistics. 9, 1100147, (2023). 10.3389/fams.2023.1100147
IV. B. T. Polyak, P. S. Shcherbakov. : ‘Hard problems in linear control theory: Possible approaches to solution’. Automation and Remote Control. Vol. 66 (5), pp. 681–718, (2005). 10.1007/s10513-005-0115-0
V. C. Xiu, R. Zhou, Y. Liu. : ‘New chaotic memristive cellular neural network and its application in secure communication system’. Chaos, Solitons & Fractals. 141, 110316 (2020). 10.1016/j.chaos.2020.110316
VI. C. Nishad, R. Prasad, P. Kumar, et al., : ‘Synchronization analysis chaos of fractional derivatives chaotic satellite systems via feedback active control methods’.AUTHOREA (2022). 10.22541/au.165527106.69915094/v1
VII. D. S. Scott. : ‘On the accuracy of the gerschgorin circle theorem for bounding the spread of a real symmetric matrix’. Linear algebra and its applications. Vol. 65 pp. 147–155, (1985). 10.1016/0024-3795(85)90093-X
VIII. Idowu Babatunde A., Olasunkanmi Isaac Olusola, O. Sunday Onma, Sundarapandian Vaidyanathan, Cornelius Olakunle Ogabi, and Olujimi A. Adejo. : ‘Chaotic financial system with uncertain parameters-its control and synchronisation’. International Journal of Nonlinear Dynamics and Control. Vol. 1 (3), pp. 271-286, (2019). 10.1504/IJNDC.2019.098682
IX. I. Pehlivan, Y. Uyaroglu, M. Yogun. : ‘Chaotic oscillator design and realizations of the rucklidge attractor and its synchronization and masking simulations’. Scientific Research and Essays. Vol. 5 (16), pp. 2210–2219, (2010).
X. J. Tang. : ‘Synchronization of different fractional order time-delay chaotic systems using active control’. Mathematical problems in Engineering. 2014 (2014). Article ID 262151. 10.1155/2014/262151
XI. L. M. Pecora, T. L. Carroll. : ‘Synchronization in chaotic systems’. Physical review letters. Vol. 64 (8), pp. 821, (1990). 10.1103/PhysRevLett.64.821
XII. M. T. Akter, A. Tarammim, S. Hussen. : ‘Chaos control and synchronization of modified lorenz system using active control and backstepping scheme’. Waves in Random and Complex Media. pp. 1–20, (2023). 10.1080/17455030.2023.2205529
XIII. M. Liu, Z. Wu, X. Fu. : ‘Dynamical analysis of a one-and two-scroll chaotic system’. Mathematics. Vol. 10 (24), 4682, (2022).
XIV. M. Marwan, S. Ahmad, M. Aqeel, M. Sabir. : ‘Control analysis of rucklidge chaotic system’. Journal of Dynamic Systems, Measurement, and Control. Vol. 141 (4), 041010 (2019). 10.1115/1.4042030
XV. R. Karthikeyan, V. Sundarapandian. : ‘Hybrid chaos synchronization of four scroll systems via active control’. Journal of Electrical Engineering. Vol. 65(2), pp. 97-103, (2014). 10.2478/jee-2014-0014
XVI. S. Vaidyanathan. : ‘A novel chemical chaotic reactor system and its output regulation via integral sliding mode control’. International Journal of ChemTech Research. Vol. 8(7), pp.146-158,
XVII. S. Vaidyanathan. : ‘Lotka-volterra population biology models with negative feedback and their ecological monitoring’. International Journal Pharm Tech Res. Vol. 8 (5), pp. 974–981, (2015).
XVIII. S. Vaidyanathan, C. K. Volos, K. Rajagopal, I. Kyprianidis, I. Stouboulos. : ‘Adaptive backstepping controller design for the anti-synchronization of identical windmi chaotic systems with unknown parameters and its spice implementation’. Journal of Engineering Science & Technology Review. Vo. 8 (2), pp. 74-82, (2015).
XIX. S. Mobayen, S. Vaidyanathan, A. Sambas, S. Kacar, ̈U. C ̧ avu ̧so ̆glu. : ‘A novel chaotic system with boomerang-shaped equilibrium, its circuit implementation and application to sound encryption, Iranian Journal of Science and Technology’. Transactions of Electrical Engineering. Vol. 43, pp. 1–12. (2019). 10.1007/s40998-018-0094-0
XX. S. Vaidyanathan, A. Sambas, S. Kacar, U. Cavusoglu. : ‘A new finance chaotic system, its electronic circuit realization, passivity based synchronization and an application to voice encryption’. Nonlinear Engineering. Vol. 8 (1), pp. 193–205, (2019). 10.1515/nleng-2018-0012
XXI. S. Wang, S. Bekiros, A. Yousefpour, S. He, O. Castillo, H. Jahanshahi, : ‘Synchronization of fractional time-delayed financial system using a novel type-2 fuzzy active control method’. Chaos, Solitons & Fractals. 136, 109768 (2020). 10.1016/j.chaos.2020.109768
XXII. S. Vaidyanathan. : ‘Global chaos synchronization of rucklidge chaotic systems for double convection via sliding mode control’. International Journal of ChemTech Research. Vol. 8 (8), pp. 61–72 (2015).
XXIII. U. E. Kocamaz, Y. Uyaro ̆glu. : ‘Controlling rucklidge chaotic system with a single controller using linear feedback and passive control methods’. Nonlinear Dynamics. 75, pp. 63–72 (2014). 10.1007/s11071-013-1049-7
XXIV. U. Vincent. : ‘Chaos synchronization using active control and backstepping control: a comparative analysis’. Nonlinear Analysis: Modelling and Control. Vol. 13 (2), pp. 253–261, (2008).
XXV. Yao, Q., : ‘Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control’. Chaos, Solitons & Fractals. 142, 110372 (2021). 10.1016/j.chaos.2020.110372
XXVI. Y. Lei, W. Xu, W. Xie. : ‘Synchronization of two chaotic four-dimensional systems using active control’. Chaos, Solitons & Fractals. Vol. 32 (5), pp. 1823–1829 (2007). 10.1016/j.chaos.2005.12.014
XXVII. Yang Xinsong, Yang Liu, Jinde Cao, and Leszek Rutkowski. : ‘Synchronization of coupled time-delay neural networks with mode-dependent average dwell time switching’. IEEE transactions on neural networks and learning systems. Vol. 31(12), pp. 5483-5496 (2020). 10.1109/TNNLS.2020.2968342
XXVIII. Zouari Farouk, and Amina Boubellouta. ‘Adaptive neural control for unknown nonlinear time-delay fractional-order systems with input saturation’. In Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems, IGI Global. 54-98. (2018). 10.4018/978-1-5225-5418-9.ch003

View | Download