Surface Electromagnetic TM Waves along the Boundary between Two Nonlinear Anisotropic Dielectrics


Yuri P. Rybakov,Bijan Saha,



Maxwell’s Equations,Surface Waves,Dielectric Permittivity ,KerrDielectrics,


It is shown that the Maxwell’s equations for surface electromagnetic TM waves, propagating along the plane boundary between two nonlinear dielectrics with arbitrary diagonal tensor of dielectric permittivity, depending on 2 | | E  , can be integrated in quadratures. For the TM plane wave the magnetic intensity has only the transverse component, but the electric intensity has both transverse and longitudinal ones. This fact permits one to find the first integral of the Maxwell’s equations and eliminate the magnetic intensity. The resulting equations for the electric intensity can be simplified and integrated, if one uses the transverse permittivity as the independent variable. Finally, we consider the Kerr dielectrics, with the permittivity being a quadratic function of the electric intensity. In this case the quadratures can be reduced to the elliptical integrals.


I.Abdulhalim I., Zourob M., Lakhtakia A. (2008). Surface plasmon resonance for bio-sensing:a mini-review. Electromagnetism, 28: 214-242.Available online:

II.Agranovich V.M., Chernyak V.Y. (1982). Perturbation theory for weakly nonlinear P-polarized surface polaritons. Solid State Communications, 44(8): 1309-1311.Available online:

III.Agranovich V.M., Darmanyan S.A., Dubovsky O.A., Kamchatnov A.M., Ogievetsky E.I., Reineker P. (1996). Fermi resonance solitary wave on the interface between two layers of organic semiconductors. Physical Review B: Condensed Matter, 53(23): 15451-15454.Available online:

IV.Agranovich V.M., Darmanyan S.A., Kamchatnov A.M., Leskova T.A., Boardman A.D. (1997). Variational approach to solitons in systems with cascaded 2xnonlinearity. Physical Review E –Statistical, Nonlinear, and Soft Matter Physics, 55(2): 1894-1898.Available online:

V.Agranovich V.M., Mills D.L. (1985). Surface polaritons -Electromagnetic waveson interface surfaces and boundaries. NASA STI/Recon Technical Report A86:36694.Available online:

VI.Boardman A.D. (1982). Electromagnetic Surface Modes. John Wiley & Sons Ltd, New York.

VII.Fedyanin V.K., Minalache D. (1982). P-polarized nonlinear surface polaritons in layered structures. Zeitschrift für Physik. B: Condensed Matter, 47(2): 167-173.Available online:

VIII.Gaspar-Armenta J.A., Villa-Villa F. (2013). Electromagnetic surface waves at a metal 2D photonic crystal interface. Journal of the Optical Society of America, 30B(8): 2271-2276.Available online:

IX.Mackay T.G., Lakhtakia A. (2010). Electromagnetic Anisotropy and Bi-anisotropy: AField Guide. World Scientific, Singapore.

X.Minalache D., Mazilu D., Bertolotti M., Sibila C., Fedyanin V.K. (1988). Nonlinear TE-polarized surface guided waves in a dielectric “anti-waveguide”. Solid State Communications, 66(5): 517-520.Available online:

XI.Minalache D., Nazmitdinov R.G., Fedyanin V.K. (1984). P-polarized nonlinear surface waves insymmetric layered structures. Physica Scripta, 29(3): 269-274.Available online:

XII.Minalache D., Nazmitdinov R.G., Fedyanin V.K. (1989). Nonlinear optical waves in layered structures. Soviet Journal of Particles and Nuclei, 20(1): 86-93.Available online:

XIII.Neidlinger Th., Reineker P., Agranovich V.M. (1997). Influence of static disorder on the dynamics of Fermi resonance solitary waves at the interface between two molecular layers. Journal of Luminescence, 72-74: 804-805.Available online:

XIV.Polo J., Mackay T., Lakhtakia A. (2013). Electromagnetic Surface Waves: AModern Perspective. Elsevier Inc., New York.

XV.Sarid D., Challener W. (2010). Modern Introduction to Surface Plasmons: Theory, Mathematical Modeling and Applications. Cambridge University Press, London.

XVI.Strashko A.A., Agranovich V.M. (2011). To the theory of surface plasmon-polaritons on metals covered with resonant thin films. Optics Communications, 332: 201-205.Available online:

XVII.Uvarova L.A., Fedyanin V.K. (1996). Asymptotic solutions for electromagnetic waves in a nonlinear optical cylinder. Theoretical and Mathematical Physics, 106(1): 68-75.Available online:

View | Download