Aleksander M. Mezhuev,Ivan I. Pasechnikov,Aleksandr S. Nazarov,Dmitry V. Rybakov,



Telecommunication network,multi-loop adaptation,integrated approach,information efficiency,performance coefficient,bandwidth,


This paper discusses the multi-loop adaptation of a telecommunication network and shows how this problem can solved in the network’s variable operation conditions by applying generalized indices of information exchange efficiency evaluation (information efficiency indices), tensor methodology, spectral theory of graphs, and coherent models and considering accepted assumptions. The model representation of multi-loop adaptation is structured by levels, proceeding from the commonality of the problems being solved. The elaborated generalized algorithm and tensor orthogonal and imitative models for the telecommunication network of various topologies allow deriving information efficiency functions and evaluate this efficiency on the basis of generalized indices, including information transmission performance coefficient, inflow bandwidth, and band efficiency angle tangent. The modeling results confirm the feasibility and functionality of the suggested methodological tools for organization adaptation on the basis of the integral approach and the system of generalized indices in the context of inflow changes and under destabilizing influences.


I. Anwar Hossain Md. Tarique M. Effect of multipath fading and multiple access interference on broadband code division multiple access systems. Int J Commun Sys. 2011; 25 (7); 874-886.
II. Arslan H, Chen ZhN, Benedetto M. Ultra Wideband Wireless Communication. New-York, London: John Wiley & Sons; 2005.
III. August NJ, Thirugnanam R, Ha DS. An adaptive UWB modulation scheme for optimization of energy, BER, and data rate. IEEE Conf UWB Sys Tech. 2004; 182 – 186.
IV. Baidas MW, Alsusa Em, Khairi A. Hamdi Power allocation over time varying multiple access interference channels. Int J Commun Sys. 2016; 29 (13); 2041-2058.
V. Bambos N. Toward power-sensitive network architectures in wireless communications: Concepts, issues and design aspects. IEEE Pers. C. 1998; 5(3); 50-59.
VI. Basagni S, Turgut D, Das SK. Mobility-adaptive protocols for managing large ad hoc networks. Proc IEEE Int Conf Commun. 2001; 1539 – 1543.
VII. Cuomo F, Martello C, Baiocchi A., Capriotti F. Radio resource sharing for ad hoc networking with UWB. IEEE J Sel Ar Commun. 2002; 20 (9); 1722 – 1732.
VIII. Cuomo F, Martello C. A distributed power regulated algorithm based on SIR margins for adaptive QoS support in wireless networks. Proc Pers Wirel Commun 2003; 2775 of Lecture Notes in Computer Science. Heidelberg: Springer; 114 – 127.
IX. Cvetkovic D,Doob M, Sachs H.Spectra of Graphs. Theory and Application. New York, San Francisco, London: Academic Press; 1980.
X. Goldsmith A. Wireless Communications. Cambridge: Cambridge University Press; 2005.
XI. Golovin OV, Prostov SP. Shortwave Radio Communication Devices and Systems [Sistemy i ustroystvakorotkovolnovoyradiosvyazi]. Moscow: GoryachayaLiniya; 2006.
XII. Gupta P, Kumar PR. Towards an information theory of large networks: An achievable rate region. IEEE Trans. Inform. Theory 2003; (49)8; 1877 – 1894.

XIII. Julian D, Chiang M, O’Neill D, Boyd S. QoS and fairness constrained convex optimization of resource allocation for wireless cellular and ad hoc networks. Proc. IEEE Infocom Conf. 2002.
XIV. Kawadia V, Kumar PR. Principles and protocols for power control in wireless ad hoc net works. IEEE J. Sel. Areas Commun. 2005; 23(1); 76 – 88.
XV. Kron G. Tensor Analysis of Networks. New-York, London: John Wiley & Sons; 1965.
XVI. Mezhuev AM, Korennoy AV, Pasechnikov II. Method of forming structurally sus-tainable and information efficient network information systems [Metodformirova-niyastrukturnoustoychivykh i informatsionnoeffektivnykhsetevykhinformatsion-nykhsistem]. Radiotekhnika 2019; 4; 84 – 94.
XVII. Mezhuev AM, Pasechnikov II, Korennoy AV. Analyzing efficiency function of in-formation network and algorithm of evaluating information exchange modes on the basis of derivatives of generalized indicator [Analizfunktsiieffektivnostiinfor-matsionnoyseti i algoritmotsenkirezhimovinformatsionnogoobmenanaosnove-proizvodnykhobobshchennogopokazatelya]. Electromagnetic Waves and Electronic Systems 2017; 5; 12-22.
XVIII. Mezhuev AM. Tensor orthogonal model, taking account of interference conditions in evaluating information communication networks for information efficiency [Tenzornayaortogonal’nayamodel’ suchetomvliyaniyapomekhovoyobstanovki-priotsenkeinformatsionnoyeffektivnostiinfokommunikatsionnykhsetey]. Radio-tekhnika 2018; 10; 50-59.
XIX. Mirhakkak M, Schult N, Thomson D. Dynamic bandwidth management and adaptive applications for a variable bandwidth wireless environment. IEEE J. Sel. Areas Commun. 2001; 19(10); 1984 – 1997.
XX. Nazarov AN, Sychev KI. Models and Methods of Calculating Performance Indicators of Nodal Equipment and Structural Network Parameters of Next-Gen Communication Networks [Modeli i metody rascheta pokazateley kachestva funktsionirovaniya uzlovogo oborudovaniya i strukturno-setevykh parametrov setey svyazi sleduyushchego pokoleniya]. Krasnoyarsk: Polikom; 2010.
XXI. Peterson LL, Davie BS. Computer Networks: A Systems Approach, Second Edition (The Morgan Kaufmann Series in Networking): 2nd ed.San Fransisco: Morgan Kaufmann; 2000.
XXII. Porcino D. Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun Mag. 2003; 41(7); 66 – 74.
XXIII. Radunovic B, Le Boudec JY. Optimal power control, scheduling and routing in UWB networks. IEEE J Sel Ar Commun. 2004; 22 (7); 1252 – 1270.
XXIV. Subramanian L, Katz RH. An architecture for building self-configurable systems. Proc. Mobile Ad Hoc Network Comput. Workshop 2000; 63 – 73.
XXV. Yuh Shyan Chen, Chih Shun Hsu, Po Ta Chen. A multiple relay based medium access control protocol in multirate wireless ad hoc networks with multiple beam antennas. Int J Commun Sys. 2009; 23 (5); 596-632.

View | Download