Magnetization Dynamics at Elevated Temperatures: Beyond the Molecular Field Approximation for Critical Points


Olga A. Kotelnikova,Vladimir G. Morozov,Yuri G. Rudoy,



magnetic friction, critical point,


Some refinements to the values of magnetic critical points are proposed in order to improve the applicability universal molecular field approximation (MFA) which usually describes the equilibrium, or static, part in the non-equilibrium equations of magnetization dynamics. We show the results for the Curie and some other critical points calculated within the random phase approximation (RPA) for anisotropic Heisenberg models.


I. Atxitia U., Hinzke D., and Nowak U. (2017). Fundamentals and applications of the Landau-Lifshitz-Bloch equation. J. Phys.,D 50: 033003, 1-23.

II. Chubykalo-Fesenko O., Nowak U., Chantrell R. W. and Garanin D. (2006).

III. Dynamic approach for micro-magnetics close to the Curie temperatures. Phys. Rev.,B 74: 094436, 1-5.

IV. Garanin D. A. and Lutovinov V. S. (1986). An equation of state of the Heisenberg ferromagnet. J. Physique 47: 767-772.

V. Kotelnikova O.A., Morozov V.G. and Rudoy Yu.G. Magnetic friction: towards the microscopic statistical description. Report on the MISM -2017. Journal of Magnetism and Magn. Mat.(in press, 2018).

VI. RudoyYu.G.(1970). Bogoliubov’sstatistical variationalprinciple and the Green function method applied to the Heisenberg –Ising model. Theoreticaland Math. Phys. 2: 98-112.

VII. RudoyYu.G., Tserkovnikov Yu.A. (1975). Single-particle Green’sfunction inthe anisotropic Heisenberg model. IV. Spectrum andphase transitions inthepresence oftransverse field. Theoreticaland Mathematical Physics, 25: 1073-1084.

VIII. Zubarev D.N., Morozov V.G., Roepke G. (1996) Statistical mechanics of nonequilibrium processes, Vols. 1 and 2. Akademie-Wiley VCH, Berlin.

View | Download