Emergent Physics of Graphene


Elena F. Sheka,




Dirac fermions,topological insulator,high temperature ferromagnetism,interfacial superconductivity,graphene, time inverse symmetry,


The paper presents an overview of graphene electronic structure in light of a general concept of emergent phenomena that result from the quantum phase transition caused by continuous symmetry breaking. Spin symmetry breaking of graphene, provided by a drastic enhancement of pz odd electron correlation, is complemented with time symmetry breaking. Taking together, the two issues give a clear vision of emergent spin peculiarities of graphene chemistry and predictably point to occurrence of emergents related to graphene physics, such as ferromagnetism, superconductivity and topological non-triviality.


I.Anderson P.W. (1972). More isdifferent.Science, 177: 393-396.

II.Bach V., Lieb E. H., Solovej J.P. (1994). Generalized Hartree-Fock theory and the Hubbard model, Journ. Stat. Phys., 76: 3-89.

III.Checkelsky J.G., Ye J., Onose Y., Iwasa Y., Tokura Y. (2012). Dirac-fermion–mediatedferromagnetism in a topological insulator.Nature Phys., 8: 729-733.

IV.CobasE.D., van ‟t ErveO.M.J., ChengS.-F., CulbertsonJ.C., JerniganG.G., BussmanK., JonkerB.T. (2016). Room-temperature spin filtering in metallic ferromagnet–multilayer graphene–ferromagnet junctions.ACS Nano, 10:10357–10365.

V.Coe J.P., Paterson M.J. (2016). Open-shell systems investigated with Monte Carlo configuration interaction. Int. J. Quant. Chem., 116:1772–1782.

VI.Cui Y., Bulik I.W., Jiménez-Hoyos C.A., Henderson T.M., Scuseria G.E. (2013). Proper and improper zero energy modes in Hartree-Fock theory and their relevance for symmetry breaking and restoration.J. Chem. Phys.139:154107.

VII.Di Bernardo A., Millo O., Barbone M., Alpern H., Kalcheim Y., Sassi U., Ott A.K., De Fazio D., Yoon D., Amado M., Ferrari A.C., Linder J., Robinson J.W.A. ((2017). p-Wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.Nat. Commun., 8: 14024.

VIII.Dreiser J., Pacchioni G.E., Donati F., Gragnaniello L., Cavallin A., Pedersen K.S., Bendix J., Delley B., Pivetta M., Rusponi S., Brune H. (2016). Out-of-plane alignment of Er(trensal) easy magnetization axes usinggraphene. ACS Nano, 10: 2887–2892.

IX.Enoki T., Kobayashi Y. (2005). Magnetic nanographite: an approach to molecular magnetism. J. Math. Chem., 15: 3999.

X.Gao X., Zhou Z., Zhao Y., Nagase S., Zhang S. B., Cheng Z.J. (2008). Comparative study of carbon and BN nanographenes: Ground electronic states and energy gap engineering.Phys. Chem. A,112: 12677.

XI.Hubač I., Čàrski P.(1983). Perturbation theory for open-shell systems: Simulation of the UHF states by means of the perturbed RHF wave functions.Int. J. Quant. Chem., 24:141-148.

XII.Katmis F., Lauter V., Nogueira F.S., Assaf B.A., Jamer M.E., Wei P.,Satpati B., Freeland J.W., Eremin I., Heiman D., Jarillo-Herrero P., Moodera J.S. (2016). A high-temperature ferromagnetic topological insulating phase by proximity XIII.coupling. Nature, 533: 513-516.

XIV.Khoo K.H., LeongW.S., ThongJ.T.L.,QuekS.Y. (2016).

XV.Origin of contact resistance at ferromagnetic metal–graphene interfaces. American Chemical SocietyNano, 10:11219–11227.

XVI.Kitagawa Y., Saito T., Nakanishi Y., Kataoka Y., Matsui T., Kawakami T., Okumura M., Yamaguchi K. (2009). Spin contamination error in optimized geometry of singlet carbene (1A1) by broken-symmetry method, J. Phys. Chem. A,113:15041–15046.

XVII.Laughlin R. B. (1999). Nobel lecture: Fractional quantization, Rev. Mod. Phys., 71: 863-874.

XVIII.Laughlin R. B., Pines D. (2000). The theory of everything, PNAS, 97: 28-31.

XIX.Löwdin P.-O. (1958). Correlation problem in many-electron quantum mechanics. 1. Review of different approaches and discussion of some current ideas, Adv. Chem. Phys., 2: 209-322.

XX.Liu Q., Liu C.-X., Xu C., Qi X.-L., Zhang S.-C. (2009).

XXI.Magnetic impurities on the surface of a topological

XXII.Insulator. Phys. Rev. Lett., 102: 156603.XXIII.Nai C.T.,Xu H.,Tan S.J.R.,Loh K.P. (2016). Analyzing

XXIV.Dirac cone and phonon dispersion in highly oriented nanocrystalline graphene. ACS Nano, 10: 1681–1689.

XXV.Ning G., Xu C., Hao L., Kazakova O., Fan Z., Wang H.,

XXVI.Wang K., Gao J., Qian W., Wei F. (2013). Ferromagnetism in nanomesh graphene.Carbon, 51: 390-396.

XXVII.Noodleman L. (1981). Valence bond description of antiferromagnetic coupling in transition metal dimmers.J. XXVIII.Chem. Phys., 74: 5737-5742.

XXIX.NovoselovK.S., Fal′koV.I., ColomboL., GellertP.R., SchwabM.G., KimK. (2012). A roadmap for Graphene.Nature, 490: 192-200.

XXX.Pavarini E., Koch E., Schollwöck U., eds. (2013) Emergent Phenomena in Correlated Matter . XXXI.Forschungszentrum Jülich and the German Research School for Simulation Sciences, Jülich.

XXXII.Sepioni M., Nair R.R., Rablen S., Narayanan J., Tuna F., Winpenny R., Geim A.K., Grigorieva I.V. (2010). Limits on

XXXIII.intrinsic magnetism in graphene, Phys. Rev. Lett., 105:


XXXV.Sheka E.F. (2011). Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics, CRC Press, Taylor & Francis Group, Boca Raton, London, New York.

XXXVI.Sheka E.F. (2015). Stretching and breaking of chemical bonds, correlation of electrons, and radical properties of covalent species. Adv.Quant.Chem.70: 111-161.

XXXVII.Sheka E.F. (2017). Spin Chemical Physics of Graphene.

XXXVIII.Pan Stanford: Singapore.

XXXIX.Sheka E.F. (2018). Dirac material graphene, Rev. Adv.

XL.Mater. Sci., 53: 1-28.

XLI.Tada K., Haruyama J., Yang H. X., Chshiev M., Matsui T., Fukuyama H. (2011). Ferromagnetism in hydrogenated graphene nanopore arrays, Phys. Rev. Lett., 107: 217203.

XLII.Van Fleck J.H. (1932). The Theory of Electric and

XLIII.Magnetic Susceptibilities. Oxford.

XLIV.Yannouleas C., and Landman U. (2007). Symmetry breaking and quantum correlations in finite systems: studies of quantum dots and ultra-cold Bose gases and related nuclear and chemical methods.Rep. Prog. Phys., 70:2067–2148.

XLV.Yazyev O.V. (2010). Emergence of magnetism in

XLVI.graphene materials and nanostructures. Rep. Prog. Phys.,

XLVII.73: 05650130.

XLVIII.Zheng D., Zhang G-M., Wu C. (2011). Particle-hole

XLIX.symmetry and interaction effects in the Kane-Mele-

L.Hubbard model.Phys. Rev. B, 84: 205121.

View | Download