Marina Vl. Byrdina,Lema A. Bekmurzaev,Mikhail F. Mitsik,Svetlana V. Kurenova,



Flexible inextensional (soft) shell,Navier-Stokes equations,analytical calculation method,shell gravity force,motion resistance forces,


This work makes use of Navier-Stokes equations to describe an analytical method of finding the motion speed of a flexible inextensional shell falling down to the ground from a preset height and determines the duration of this fall. The soft shell in question is a fabric body of aerodynamic shape or an item of clothes, an airborne vehicle element, etc. Analytical relations are presented for the speed at which the shell moves in the air, taking account of the air resistance and the shell fall duration. The boundary problem of the soft shell vertically falling in the air is solved.


I. A. Lin, A. Milshteyn, G. Herman, M. Garcia, C. Liu, K. Rad, D. Guillaume, H. Boussalis. Virtual reality head-tracking observation system for mobile robot. 3rd Mediterranean Conference on Embedded Computing (MECO). 2014. Pp. 152–157. DOI: 10.1109/MECO.2014.6862681

II. E. Perl. Review of Airport Surface Movement Radar Technology. IEEE Aerospace and Electronic Systems Magazine. 2006. Vol. 21. Issue 10. Pp. 24–27. DOI: 10.1109/MAES.2006.275302.

III. J. A. Paivanas, J. K. Hassan. Attraction Force Characteristics Engendered by Bounded, Radially Diverging Air Flow. IBM Journal of Research and Development. 1981. Vol. 25. Issue 3. Pp. 176–186. DOI: 10.1147/rd.252.0176

IV. J. S. Rocha, C.A.B.O. Lira, E.S.G. Maciel. Numerical Techniques For Future Applications In Termo-Fluid-Dinamic Projects Of VHTGR Reactors: Viscous Case. IEEE Latin America Transactions. 2018. Vol. 16. Issue 4. Pp. 1263–1268. DOI: 10.1109/TLA.2018.8362166

V. J. T. Bingham, J. Lee, R. N. Haksar, J. Ueda, C. K. Liu. Orienting in mid-air through configuration changes to achieve a rolling landing for reducing impact after a fall. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014. Pp. 3610–3617. DOI: 10.1109/IROS.2014.6943068

VI. L. G. Loytsyanskiy, Fluid and Gas Mechanics [Mekhanikazhidkosti i gaza]. 5th Ed. – Мoscow: Nauka, 1978. – 736 pp.

VII. L. Kerhuel, S. Viollet, N. Franceschini. A sighted aerial robot with fast gaze and heading stabilization. IEEE/RSJ International Conference on Intelligent Robots and Systems. 2007. Pp. 2634 – 2641. DOI: 10.1109/IROS.2007.4399497

VIII. L.A. Bekmurzaev,,M. F. Mitsik, M.V. Byrdina,, G.B. Grigoryeva. Conditions of Stability of Vertical Cylindrical Soft Shell. Proceedings of 2018 IEEE East-West Design and Test Symposium, EWDTS 2018. DOI: 10.1109/EWDTS.2018.8524774

IX. M. F. Mitsik,,M.V. Byrdina, L.A. Bekmurzaev. Modeling of developable surfaces of three-dimensional geometric objects. Proceedings of 2017 IEEE East-West Design and Test Symposium, EWDTS 2017. DOI: 10.1109/EWDTS.2017.8110086

X. M. Indenbirken,T. Schneider, V. Siepmann, K. Strauss.A new model for the propagation of jets in dilute gas‐solid crossflows. Canadian Journal of Chemical Engineering. 2000. 78(3), 2000. Pp. 468-477. DOI: 10.1002/cjce.5450780305

XI. M.V. Byrdina, L.A. Bekmurzaev, M. F. Mitsik. Three-dimensional visualization of garments in the Embarcadero Rad Studio environment. Fundamental Research. 2017. Issue 8-1. Pp. 27-31.

XII. S. M. Targ. A Concise Course on Engineering Mechanics [Kratkiykursteoreticheskoymekhaniki]. Moscow: Vysshaya shkola, 1986. – 416 pp.

XIII. V. N. Kocharenko, M. F. Mitsik, O. A. Aleynikova. Modeling of two-dimensional supercritical flow. Global Journal of Pure and Applied Mathematics, 2016. Vol. 12. Issue 1. Pp. 617-642.

XIV. Z. Zhang, H. Liu, Z. Yu, X. Chen, Q. Huang, Q. Zhou, Z. Cai, X. Guo, W. Zhang. Biomimetic upper limb mechanism of humanoid robot for shock resistance based on viscoelasticity. IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids). 2017. Pp. 637–642. DOI: 10.1109/HUMANOIDS.2017.8246939

View | Download