N. Ramanjaneyulu,D. Satyanarayana,K. SatyaPrasad,



Ring oscillator,Voltage Controlled Oscillator,PLL,Communication systems,


Oscillators are used to convert Direct Current (DC) from power supply to an Alternating Current (AC) signal. Oscillatory behavior is ubiquitous in all physical systems, especially in electronic and optical. This paper present a inverter based (three stage) and delay cell based (three and five stage) Ring Oscillators (ROs).ROs was simulated using Cadence tools and its performance was evaluated based on different parameters having with 7.79GHz frequency (90nm technology), wide tuning- range from 11.58 GHz to 16.62 GHz (90 nm technology), Phase noise of - 101dBc/Hz (90 nm technology) and average power of 8.83μW (45 nm technology) .All these parameters are analyzed using CMOS technologies in 45nm, 90nm and 180nm technologies.


I. B. Razavi, R. F. Microelectronics, Prentice Hall PTR, 1997.
II. H. Yoon, Y. Lee, J. J. Kim, J. Choi, “A wideband dual-mode LC-VCO with a
switchable gate-biased active core”, IEEE Trans. Circuits Syst. II, Exp.
Briefs, Vol.: 61, Issue: 5, pp. 289–293, 2014.
III. J. A. Hou, Y. H. Wang, “A 5 GHz differential colpitts CMOS VCO using the
bottom PMOS cross-coupled current source”, IEEE Microw.Wireless
Component Lett., Vol.: 19, Issue: 6, pp. 401–403, 2009.

IV. J. C. Chien, L. H. Lu, “Design of wide-tuning-range millimeter-wave CMOS
VCO with a standing-wave architecture”, IEEE J. Solid-State Circuits, Vol.:
42, Issue: 9, pp. 1942–1952, 2007.
V. J. L. González, F. Badets, B. Martineau, D. Belot, “A 56-GHz LC-tank VCO
with 17% tuning range in 65-nm bulk CMOS for wireless HDMI”, IEEE
Trans. Microw. Theory Techn., Vol.: 58, Issue: 5, pp. 1359–1366, 2010.
VI. M. T. Hsu, P. H. Chen, “5G Hz low power CMOS LC VCO for IEEE
802.11a application”, in Proc. Asia-Pacific Microw. Conf, pp. 263–266,
VII. N. Ramanjaneyulu, D. Satyanarayana, K. S. Prasad, “Design of a 3.4 GHz
Wide-Tuning-Range VCO in 0.18 μm CMOS”, Lecture Notes in Networks
and Systems, Vol.: 5, pp-227-234, 2017.
VIII. N. Ramanjaneyulu, D. Satyanarayana, K. S. Prasad, “Design of a Three Stage
Ring VCO in 0.18 μm CMOS under PVT Variations”, International Journal
of Computer Applications, Vol.: 170, Issue: 8, pp. 35-39, 2017.
IX. P. H. Hsieh, J. Maxey, C. K. Yang, “Minimizing the supply sensitivity of a
CMOS ring oscillator through jointly biasing the supply and control
voltages”, IEEE J. Solid-State Circuits, Vol.: 44, Issue: 9, pp. 2488–2495,
X. P. K. Tsai, T. H. Huang, “Integration of current-reused VCO and frequency
tripler for 24-GHz low-power phase-locked loop applications”, IEEE Trans.
Circuits Syst. II, Exp. Briefs, Vol.: 59, Issue: 4, pp. 199–203, 2012.
XI. Q. Wu, S. Elabd, T. K. Quach, A. Mattamana, S. R. Dooley, J. McCue, P. L.
Orlando, G. L. Creech, W. Khalil, “A–189 dBc/Hz FOMT wide tuning range
Ka-band VCO using tunable negative capacitance and inductance
redistribution”, Proc. IEEE Radio Freq. Integr. Circuits (RFIC) Symp, pp.
199–202, 2013.
XII. Y. J. Moon, Y. S. Roh, C. Y. Jeong, C. Yoo, “A 4.39–5.26 GHz LC-tank
CMOS voltage-controlled oscillator with small VCO-gain variation”, IEEE
Microw. Wireless Compon. Lett., Vol.: 19, Issue: 8, pp. 524–526, 2009.
XIII. Z. Z. Chen, T. C. Lee, “The design and analysis of dual-delay-path ring
oscillators”, IEEE Trans Circuits Syat.I, Vol.: 58, Issue: 3, pp. 470-478, 2011.

View | Download