Gurpreet Singh,Pankaj,



Laplace Transform,heat equations,Variational iteration method,Partial differential equations,


This study utilizes an innovative approach by combining the Laplace transform with the variational iteration method to address one-dimensional heat equations encountered in diffusion phenomena. Initially, the heat equation is transformed into a modified form using the Laplace transformation. Subsequently, the variational iteration method is employed to obtain both numerical and approximate analytical solutions. In addition to graphical representations of the outcomes obtained using the suggested, the study includes practical instances to demonstrate the efficacy of the suggested approach.


I. C. P. Murphy, D. J. Evans. : ‘Chebyshev series solution of two dimensional heat equation’. Mathematics and Computers in Simulation. Vol. 23(2), pp. 157-162 (1981). 10.1016/0378-4754(81)90053-7
II. E. F. Cara, A. Munch. : ‘Numerical exact controllability of the 1D heat equation: duality and Carleman weights’. Journal of Optimization Theory and Applications. Vol. 163(1), pp. 253-285, (2014). 10.1007/s10957-013-0517-z
III. E. Hesameddini and H. Latifizadeh. : ‘Reconstruction of variational iteration algorithms using the Laplace transform’. International Journal of Nonlinear Sciences and Numerical Simulation. Vol. 10(11-12), pp. 1377-1382, (2009). 10.1515/IJNSNS.2009.10.11-12.1377
IV. G. Singh, I. Singh. : ‘New Laplace variational iterative method for solving 3D Scrodinger equations’. Journal of Mathematical and computational science,Vol. 10(5), pp. 2015-2024 (2020). 10.28919/jmcs/4792
V. J. Douglas, D. W. Peaceman. : ‘Numerical solution of two dimensional heat flow problems’. Alche Journal. Vol. 1(4), pp. 505-512 (1955). 10.1002/aic.690010421
VI. J. H. He. : ‘Variational iteration method – a kind of non-linear analytical technique: some examples’. International Journal of Non-Linear Mechanics. Vol. 34(4), pp. 699-708 (1999). 10.1016/S0020-7462(98)00048-1
VII. J. Kouatchou. : ‘Finite Difference and Collocation Methods for solution of Two dimensional Heat Equation’. Numerical Methods for Partial Differential Equations. Vol. 17(1), pp. 54-63 (2001). 10.1002/1098-2426(200101)17:13.0.CO;2-A
VIII. K. A. Koroche. : ‘Numerical solution for one dimensional linear types of parabolic partial differential equation and application to heat equation’. Mathematics and Computer Science. Vol. 5(4), pp. 76-85 (2020). 10.11648/j.mcs.20200504.12
IX. K. D. Sharma, R. Kumar, M. K. Kakkar, S. Ghangas. : ‘Three dimensional waves propagation in thermo-viscoelastic medium with two temperature and void’. In IOP Conference Series: Materials Science and Engineering. 1033(1), 012059-73 (2021). 10.1088/1757-899X/1033/1/012059
X. M. Aneja, M. Gaur, T. Bose, P. K. Gantayat, R. Bala. : ‘Computer-based numerical analysis of bioconvective heat and mass transfer across a nonlinear stretching sheet with hybrid nanofluids’. In International Conference on Frontiers of Intelligent Computing: Theory and Applications, pp. 677-686 (2023). 10.1007/978-981-99-6702-5_55
XI. M. Dehghan. : ‘The one-dimensional heat equation subject to a boundary integral specification’. Chaos, Solitons & Fractals. Vol. 32(2), pp. 661-675, (2007). 10.1016/j.chaos.2005.11.010
XII. S. A. Khuri and A. Sayfy. : ‘A Laplace variational iteration strategy for the solution of differential equations’. Applied Mathematics Letters. Vol. 25 (12), pp. 2298–2305 (2012). 10.1016/j.aml.2012.06.020
XIII. T. Luga, T. Aboiyar, S. O. Adee. : ‘Radial basis function methods for approximating the two dimensional heat equations’. International Journal of Engineering Applied Sciences and Technology. Vol. 4(2), pp. 7-15 (2019). 10.33564/IJEAST.2019.v04i02.002
XIV. Z. Hammouch and T. Mekkaoui. : ‘A Laplace-variational iteration method for solving the homogeneous Smoluchowski coagulation equation’. Applied Mathematical Sciences. Vol. 6(18), pp. 879-886 (2012).

View | Download