Pinakee Dey,M. A. Mozid Pk,M.S.Uddin ,



over-damped,perturbation techniques,biological system,


Based on the Struble technique, a simple formula is presented for obtaining approximate solutions of over-damped nonlinear differential systems when one of the roots of the unperturbed equation is much smaller than the other roots. The method is easier than the existing perturbation techniques. An example is given to biological system.


I.Krylov N.N and Bogoliubov N.N, Introduction to Nonlinear Mechanics, Princeton University press, New Jersey 1947.

II.Bogoliubov N.N, Mitropolskii Yu. A., Asymptotic Methods in theTheory of Nonlinear Oscillation, Gordan and Breach, New York, 1961.

III.Cunningham W.J., Introduction to Nonlinear Analysis, McGraw-Hill Book Company, 1958.

IV.MinorskN. y, Introduction to Nonlinear Mechanics, J .E. Edwards, Ann Arbor, Michigan, 1947.

V.Nayfeh A. H., Perturbation Methods, J. Wiley, New York, 1973.

VI.Popov I. P., “A generalization of the Bogoliubov asymptotic method in the theory of nonlinear oscillations”, Dokl.Akad. Nauk SSSR 111 (1956), 308-310 (in Russian).

VII.Murty I. S. N., Deekshatulu B. L. and Krisna G., “General asymptotic method of Krylov-Bogoliubov for over-damped nonlinear system”, J. Frank Inst. 288 (1969), 49-46.

VIII.Alam Shamsul M., “Asymptotic methods for second-order over-damped and critically damped nonlinear system”, Soochow J. Math, 27 (2001), 187-200.

IX.Alam Shamsul M., “Method of solution to the n-th order over-damped nonlinear systems under some special conditions”, Bull. Call. Math. Soc., 94(6) (2002), 437-440.

X.Alam Shamsul M.,, “Method of solution to the order over-damped nonlinear systems with varying coefficients under some special conditions”, Bull. Call. Math. Soc., 96(5) (2004), 419-426.

XI.FitzHugh, R., Impulse and physiological states in theoretical models of nerve membrane”, J. Biophys., Vol. 1, pp. 445-466, 1961.

XII.Goh, B. S., Global stability in many species systems, The American Naturalist, Vol. 111, pp. 135-143, 1977.

XIII.Hsu, I. D. and Kazarinoff, “An applicable Hopf bifurcation formula and instabity of small periodic solution of the field-noise model”, J. math. Anal. Applic., Vol. 55, pp. 61-89, 1976.

XIV.Lefever, R. and Nicolis G., “Chemical instabilities and sustained oscillations”, J. Theor. Biol., Vol. 30, pp. 267-248, 1971.

XV.Lotka, A. J., “The growth of mixed population”, J. Wsah. Acad. Sci. Vol. 22, pp. 461-469, 1932.

XVI.Troy, W. C., “Oscillating phenomena in nerve condition equation”, Ph.D. Dissertation, SUNY at Buffelo, 1974.

XVII.Volterra, V., “Variazioni e fluttuazioni del numero d’individue in species animali conviventi”, Memorie del R. Comitato Talassografico Italiano, Vol. 131, pp. 1-142, 1927.

XVIII.Alam Shamsul M., Azad Abul Kalam M. and Hoque M. A., “A general Struble’s technique for solving an n-th order weakly non-linear differential system with damping”, Journal of Non-Linear Mechanics, Vol. 41, pp.905-918, 2006

Pinakee Dey,M. A. Mozid Pk.,M.S.Uddin View Download