PERIODIC SOLUTION OF THE NONLINEARJERK OSCILLATOR CONTAINING VELOCITY TIMES ACCELERATION-SQUARED: ANITERATION APPROACH

Authors:

B. M. IkramulHaque,Md. Zaidur Rahman,Md. Iqbal Hossain,

DOI NO:

https://doi.org/10.26782/jmcms.2020.06.00033

Keywords:

Jerk equation, nonlinear oscillator,Iteration Method,Truncated Fourier series,

Abstract

Haque’s iteration approach has been applied to obtain analytical solution of the nonlinear jerk equation containing velocity times acceleration-squared. We have used truncated Fourier series by taking different numbers of harmonics for different iteration step. The obtained solutions give more accurate result than others and very nearer to the exact solution.

Refference:

I. Alam, M.S., Haque, M.E. and Hossain M.B.,“A new analytical technique to find periodic solutions of nonlinear systems” Int. J. Nonlinear Mech., vol. 24, pp. 1035-1045, 2007.

II. Beléndez, A., Pascual, C., Ortuno, M., Beléndez, T. and Gallego, S., “Application of a modified He’s homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities” Nonlinear Anal. Real World Appl, vol.10 (2), pp. 601-610, 2009.
III. Gottlieb, H.P.W.,“Question #38. What is the simplest jerk function that gives chaos?” American Journal of Physics, vol.64, pp. 525, 1996.
IV. Gottlieb, H.P.W.,“Harmonic balance approach to periodic solutions of nonlinear jerk equation” J. Sound Vib., vol. 271, pp. 671-683, 2004.
V. Gottlieb, H.P.W.,“Harmonic balance approach to limit cycle for nonlinear jerk equation” J. Sound Vib., vol. 297, pp. 243-250, 2006.
VI. Hu, H.,“Perturbation method for periodic solutions of nonlinear jerk equations” Phys. Lett. A, vol. 372, pp. 4205-4209, 2008.
VII. Hu, H., Zheng, M.Y. and Guo, Y.J.,“Iteration calculations of periodic solutions to nonlinear jerk equations”Acta Mech., vol. 209, pp. 269-274, 2010.
VIII. Haque, B.M.I., Alam, M.S. and MajedurRahmam, M.,“Modified solutions of some oscillators by iteration procedure” J. Egyptian Math. Soci., vol. 21, pp. 68-73, 2013.
IX. Haque, B.M.I., A “New Approach of Iteration Method for Solving Some Nonlinear Jerk Equations” Global Journal of Science Frontier Research Mathematics and Decision Sciences, vol. 13, pp. 87-98, 2013.
X. Haque, B.M.I.,“A New Approach of Mickens’ Extended Iteration Method for Solving Some Nonlinear Jerk Equations” British journal of Mathematics & Computer Science, vol. 4, pp. 3146-3162, 2014.
XI. Haque, B.M.I.,BayezidBostami M., AyubHossain M.M., Hossain M.R. and Rahman M.M.,“Mickens Iteration Like Method for Approximate Solution of the Inverse Cubic Nonlinear Oscillator” British journal of Mathematics & Computer Science, vol. 13, pp. 1-9, 2015.
XII. Haque, B.M.I., AyubHossain M.M., BayezidBostami M. and Hossain M.R.,“Analytical Approximate Solutions to the Nonlinear Singular Oscillator: An Iteration Procedure” British journal of Mathematics & Computer Science, vol. 14, pp. 1-7, 2016.
XIII. Haque, B.M.I.,Asifuzzaman M. and KamrulHasam M.,“Improvement of analytical solution to the inverse truly nonlinear oscillator by extended iterative method” Communications in Computer and Information Science, vol. 655, pp. 412-421, 2017.
XIV. Haque, B.M.I., Selim Reza A.K.M. andMominurRahman M.,“On the Analytical Approximation of the Nonlinear Cubic Oscillator by an Iteration Method” Journal of Advances in Mathematics and Computer Science, vol. 33, pp. 1-9, 2019.
XV. Haque, B.M.I. and AyubHossain M.M.,“A Modified Solution of the Nonlinear Singular Oscillator by Extended Iteration Procedure” Journal of Advances in Mathematics and Computer Science, vol. 34, pp. 1-9, 2019.
XVI. Leung, A.Y.T. and Guo, Z.,“Residue harmonic balance approach to limit cycles of nonlinear jerk equations” Int. J. Nonlinear Mech., vol. 46, pp. 898-906, 2011.
XVII. Mickens, R.E.,“Comments on the method of harmonic balance” J. Sound Vib., vol. 94, pp. 456-460, 1984.
XVIII. Ma, X., Wei, L. and Guo, Z.,“He’s homotopy perturbation method to periodic solutions of nonlinear jerk equations” J. Sound Vib., vol. 314, pp. 217-227, 2008.
XIX. Mickens, R.E.,“Iteration Procedure for determining approximate solutions to nonlinear oscillator equation” J. Sound Vib., vol. 116, pp. 185-188, 1987.
XX. Nayfeh, A.H.,“Perturbation Method” John Wiley & Sons, New York, 1973.
XXI. Nayfeh, A.H. andMook, D.T.,“Nonlinear Oscillation” John Wiley & Sons, New York, 1979.
XXII. Ramos, J.I.,“Analytical and approximate solutions to autonomous, nonlinear, third order ordinary differential equations” Nonlinear Anal. Real., vol. 11, pp. 1613-1626, 2010.
XXIII. Ramos, J.I.,“Approximate methods based on order reduction for the periodic solutions of nonlinear third-order ordinary differential equations” Appl. Math. Comput., vol. 215, pp. 4304-4319, 2010.
XXIV. Ramos, J.I. and Garcia-Lopez,“A Volterra integral formulation for determining the periodic solutions of some autonomous, nonlinear, third-order ordinary differential equations” Appl. Math. Comput., vol. 216, pp. 2635-2644, 2010.
XXV. Schot, S.H.: Jerk,“The time rate of change of acceleration” American Journal of Physics, vol. 46, pp. 1090-1094, 1978.
XXVI. Wu, B.S., Lim, C.W. and Sun, W.P.,“Improved harmonic balance approach to periodic solutions of nonlinear jerk equations” Phys. Lett. A, vol. 354, pp. 95-100, 2006.
XXVII. Zheng, M.Y., Zhang, B.J., Zhang, N., Shao,X.X. and Sun, G.Y.,“Comparison of two iteration procedures for a class of nonlinear jerk equations”Acta Mech. vol. 224,pp. 231-239, 2013.

View Download