Arunava Bhattacharyya,Asish Mitra,



artificial neural networks,optical logic,semiconductor optical amplifier,Terahertz optical asymmetric demultiplexer,


A verbal exchange today wishes for quick operational progress. This can be accomplished by replacing devices that are primarily concerned with commutation and logic with photon-based systems instead of the usual data service, the electron. The basic building blocks of superior frames are called gates. With the aid of these gates, various logical and mathematical operations can be performed. All-optical arithmetical and logical processes are eagerly expected in high-speed dialogue frameworks. In this chapter, we've introduced parallel models for adding two binary digits that are based on Sagnac gates with help from semiconductor optical amplifiers (SOA) and terahertz optical asymmetric demultiplexers (TOAD). We created a Full adder that works in parallel using only two TOADs as total switches. Using artificial neural networks (ANN), we have created a model of this circuit that is equivalent. Utilizing ANN, this circuit design has been validated. This optical circuit is now capable of synthesizing light as an input and successfully structuring the aspiration output in addition to speeding up calculation. This parallel circuit's biggest advantage is that it doesn't need synchronization for distinct inputs. An ANN model was used to analyze this circuit's performance in detail.


I. A. Bhattacharyya, D. K. Gayen, and T. Chattopadhyay, : ‘Alternative All-optical Circuit of Binary to BCD Converter Using Terahertz Asymmetric Demultiplexer Based Interferometric Switch.’ in Proceedings of 1st International Conference on Computation and Communication Advancement (IC3A–2013).
II. A. Poustie, K. J. Blow, A. E. Kelly, and R. J. Manning, : ‘All-optical full-adder with bit differential delay.’ Optics Communications 168 (1-4), 89–93 (1999). 10.1016/S0030-4018(99)00348-X
III. A. Ryou, J. Whitehead, M. Zhelyeznyakov, P. Anderson, C. Keskin, M. Bajcsy, and A. Majumdar, : ‘Free-space optical neural network based on thermal atomic nonlinearity.’ Photonics Research 9 (4), B128–B134 (2021). 10.1364/PRJ.415964
IV. A. Yariv and P. Yeh, : ‘Photonics: Optical Electronics in Modern Communications.’ Oxford University Press, UK, 6th Edition (2007).
V. B. Wang, V. Baby, W. Tong, L. Xu, M. Friedman, R. Runser, I. Glesk, and P. Prucnal, : ‘A novel fast optical switch based on two cascaded terahertz optical asymmetric demultiplexers (TOAD).’ Optics Express 10(1), 15–23 (2002). 10.1364/OE.10.000015
VI. D. K. Gayen, J. N. Roy, C. Taraphdar, and R. K. Pal, : ‘All-optical reconfigurable logic operations with the help of terahertz optical asymmetric demultiplexer.’ International Journal for Light and Electron Optics 122 (8), 711–718 (2011). 10.1016/j.ijleo.2010.04.024
VII. D. K. Gayen, T. Chattopadhyay, M. K. Das, J. N. Roy, and R. K. Pal, : ‘All-optical binary to gray code and gray to binary code conversion scheme with the help of semiconductor optical amplifier -assisted sagnac switch.’ IET Circuits, Devices & Systems 5 (2), 123–131 (2011). 10.1049/iet-cds.2010.0069
VIII. D. K. Gayen, : Optical arithmetic operation using optical demultiplexer. Circuits and Systems.’ Scientific Research, 7(11), 3485–3493 (2016). 10.4236/cs.2016.711296
IX. D. K. Gayen, ‘All-Optical 3:8 Decoder with the Help of Terahertz Optical Asymmetric Demultiplexer.’ Optics and Photonics Journal, 6 (7), 184–192, July (2016). 10.4236/opj.2016.67020
X. D. K. Gayen, : ‘Optical parallel half adder using semiconductor optical amplifier-assisted Sagnac gates.’ Journal of Mechanics of Continua and Mathematical Sciences, 17 (4), 1-7, April (2022). 10.26782/jmcms.2022.04.00001
XI. H. L. Minh, Z. Ghassemlooy, and W. P. Ng, “ ‘Characterization and performance analysis of a TOAD switch employing a dual control pulse scheme in high speed OTDM demultiplexer.’ IEEE Communications Letters 12 (4), 316–318 (2008). 10.1109/LCOMM.2008.061299
XII. J. H. Kim, S. H. Kim, C. W. Son, S. H. Ok, S. J. Kim, J. W. Choi, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, and S. H. Kim, : ‘Realization of all-optical full-adder using cross-gain modulation.’ in Proceedings of the Conference on Semiconductor Lasers and Applications, SPIE 5628, 333–340 (2005). 10.1117/12.576410
XIII. J. Zhou, B. Huang, Z. Yan and J-C. G. Bünzli, Emerging role of machine learning in light-matter interaction. Light Science & Application 8, 84 (2019). 10.1038/s41377-019-0192-4
XIV. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, : ‘A terahertz optical asymmetric demultiplexer (TOAD).’ IEEE Photonics Technology Letters 5 (7), 787–790 (1993). 10.1109/68.229807
XV. J. Gowar, : ‘Optical Communication System.’ Prentice Hall of International Limited, UK, 2nd Edition (1993).
XVI. K. E. Zoiros, J. Vardakas, T. Houbavlis, and M. Moyssidis, : ‘Investigation of SOA-assisted Sagnac recirculating shift register switching characteristics.’ International Journal for Light and Electron Optics 116 (11), 527–541 (2005). 10.1016/j.ijleo.2005.03.005
XVII. K. E. Zoiros, P. Avramidis, and C. S. Koukourlis, : ‘Performance investigation of semiconductor optical amplifier based ultra-fast nonlinear interferometer in nontrivial switching mode.’ Optical Engineering 47 (11), 115006–11 (2008). 10.1117/1.3028348
XVIII. K. Mukherjee, : ‘Method of implementation of frequency encoded all-optical half- adder, half-subtractor, and full-adder based on semiconductor optical amplifiers and add drop multiplexers.’ International Journal for Light and Electron Optics. 122 (13), 1188–1194 (2011). 10.1016/j.ijleo.2010.07.026
XIX. M Suzuki, H. Uenohara, : ‘Invesigation of all-optical error detection circuitusing SOA-MZI based XOR gates at 10 Gbit/s.’ Electron. Lett, 45 (4), 224–225 (2009). 10.1049/el:20093461
XX. P. Li, D. Huang, X. Zhang, and G. Zhu, : ‘Ultra-high speed all-optical half-adder based on four wave mixing in semiconductor optical amplifier.’ Optics Express, 14 (24), 11839–47 (2006). 10.1364/OE.14.011839
XXI. P. Ghosh, D. Kumbhakar, A. K. Mukherjee, and K. Mukherjee, : ‘An all-optical method of implementing a wavelength encoded simultaneous binary full-adder-full-subtractor unit exploiting nonlinear polarization rotation in semiconductor optical amplifier.’ International Journal for Light and Electron Optics 122 (19), 1757–1763 (2011). 10.1016/j.ijleo.2010.10.039
XXII. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, : ‘Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme.’ IEEE Journal of Quantum Electronics 40 (6), 703–710 (2004). 10.1109/JQE.2004.828261
XXIII. S. Mukhopadhyay and B. Chakraborty, : ‘A method of developing optical half- and full-adders using optical phase encoding technique.’ in Proceedings of the Conference on Communications, Photonics, and Exhibition (ACP), TuX6, 1–2 (2009).
XXIV. T. Wang, S.-Y. Ma, L. G. Wright, T. Onodera, B. C. Richard and P. L. McMahon, : ‘An optical neural network using less than 1 photon per multiplication.’ Nature Communications 13 (123), 1–8 (2022).
XXV. X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, : ‘All-optical machine learning using diffractive deep neural networks.’ Science, 361 (6406), 1004–1008 (2018). 10.1126/science.aat8084
XXVI. X. Wu, J. A. Jargon, L. Paraschis and A. E. Willner, : ‘ANN-Based Optical Performance Monitoring of QPSK Signals Using Parameters Derived From Balanced-Detected Asynchronous Diagrams.’ IEEE Photonics Technology Letters 23 (4), 248–250 (2011). 10.1109/LPT.2010.2098025
XXVII. W. Gao, L. Lu, L. Zhou, and J. Chen, : ‘Automatic calibration of silicon ring-based optical switch powered by machine learning.’ Opt. Express 28 (7), 10438–10455 (2020). 10.1364/OE.388931
XVIII. Z. Yu, X. Zhao, S. Yang, H. Chen and M. Chen, : ‘Binarized Coherent Optical Receiver Based on Opto-Electronic Neural Network.’ IEEE Journal of Selected Topics in Quantum Electronics 26 (1), 1–9 (2020). 10.1109/JSTQE.2019.2931251

View Download