Authors:
Md. Aman Mahbub,Md. Sahadat Hossain,M. Altab Hossain,DOI NO:
https://doi.org/10.26782/jmcms.2022.04.00004Keywords:
Fuzzy set,Intuitionistic fuzzy set,Intuitionistic fuzzy topological space,Intuitionistic fuzzy compactness,Intuitionistic fuzzy para-compactness,Abstract
This paper aims to establish the para-compactness concept in intuitionistic fuzzy topological space. Here we give three new notions related to para-compactness and one new notion of IF--compactness in intuitionistic fuzzy topological space. Also, we discuss separation axioms in intuitionistic fuzzy para-compactness and some of its features. Furthermore, using some provisos we will find a relation among second countable, para-compactness, and IF--compactness in intuitionistic fuzzy topological spaces.Refference:
I. Ahmed, E., Hossain, M.S. and Ali, D.M. (2014). On Intuitionistic Fuzzy T0 Spaces, Journal of Bangladesh Academy of Sciences, 38(2) 197-207.
II. Ahmed, E., Hossain, M.S. and Ali, D.M. (2015). On Intuitionistic Fuzzy R0 Spaces, Annals of Pure and Applied Mathematics, 10(1), 7-14.
III. Ahmed, E., Hossain, M.S. and Ali, D.M. (2015). On Intuitionistic Fuzzy R1 Spaces, J. Math. Comput. Sci, 5(5), 681-693.
IV. Ahmed, E., Hossain, M.S. and Ali, D.M. (2014). On Intuitionistic Fuzzy T1 Spaces, Journal of Physical Sciences, 19, 59-66.
V. Ahmed, E., Hossain, M.S. and Ali, D.M. (2014). On Intuitionistic Fuzzy T2 Spaces, IOSR Journal of Mathematics (IOSR-JM), 10(6), 26-30.
VI. Ahmad, M.K., Salahuddin. (2013). Fuzzy Generalized Variational Like Inequality problems in Topological Vector Spaces, Journal of Fuzzy Set Valued Analysis Volume 2013, doi:10.5899/2013/jfsva-00134.
VII. Ali, A.M., Senthil, S., Chendralekha, T. (2016). Intuitionistic Fuzzy Sequences in Metric Space, International Journal of Mathematics and its Applications Volume 4, Issue 1–B, 155–159.
VIII. Ali, A.M., Kanna, G.R. (2017). Intuitionistic Fuzzy Cone Metric Spaces and Fixed Point Theorems, International Journal of Mathematics and its Applications Volume 5, Issue 1–A, 25–36.
IX. Atanassov, K.T. (1986) Intuitionistic fuzzy sets,Fuzzy Sets and Systems, 20(1), 87-96.
X. Atanassov, K.T., Stojanova D., Cartesian products over intuitionistic fuzzy sets, Methodology of Mathematical Modelling, vol.1, Sofia, 1990, No.1.
XI. Barile, M. To space, Retrived from http://mathworld.wolfarm.com/T0-space.html.
XII. Bayhan, S. and Coker, D. (1996).On fuzzy separation axioms in intuitionistic fuzzy topological space, BUSEFAL, 67, 77-87.
XIII. Bayhan, S., Coker, D. (2005). Pairwise Separation axioms in intuitionistic topological Spaces, Hacettepe Journal of Mathematics and Statistics, 34, 101-114.
XIV. Chang, C.L. (1968). Fuzzy Topological Space, J. of Mathematical Analysis and Application, 24, 182-90.
XV. Coker, D. (1996). A note on intuitionistic sets and intuitionistic points, Tr. J. of Mathematics, 20(3), 343-351.
XVI. Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88(1), 81-89.
XVII. Coker, D. and Bayhan, S. (2001). On Separation Axioms in Intuitionistic Topological Space, Int. J. of Math. Sci., 27(10), 621-630.
XVIII. Coker, D. and Bayhan, S. (2003). On T1 and T2 Separation Axioms in Intuitionistic fuzzy Topological Space, Journal of Fuzzy Mathematics, 11(3), 581-592.
XIX. Das, S. (2013). Intuitionistic Fuzzy Topological Spaces (MS Thesis Paper), Dept. of Math, National Inst. of Tech.
XX. Fang, J. & Guo, Y. (2012). Quasi-coincident neighbourhood structure of relative I-fuzzy topology and its applications, Fuzzy Sets and Systems, 190, 105-117.
XXI. Hassan, Q.E. (2007).On some kinds of fuzzy connected spaces, Applications Of Mathematics, 52, N0.4, 353-361.
XXII. Immaculate, H.J., Arockiarani, I. (2015). A new class of connected spaces in intuitionistic topological spaces, Int. J. of Appl. Research, 1(9), 720-726.
XXIII. Islam, R., Hossain, M.S. and Hoque, M.F. (2020). A study on L-fuzzy T1 Spaces, Notes on Intuitionistic Fuzzy Set, 26(3), 33-42.
XXIV. Islam, M.S., Hossain, M.S. and Asaduzzaman, M. (2017). Level Seperation on Intuitionistic Fuzzy T0 spaces, Intern. J. of Fuzzy Mathematical Archive, 13(2),123-133.
XXV. Islam, M.S., Hossain, M.S. and Asaduzzaman, M. (2018). Level separation on Intuitionistic fuzzy T2 spaces; J. Math. Compu. Sci., 8(3), 353-372.
XXVI. Lee, S.J. and Lee, E.P. (2000). The Category of Intuitionistic Fuzzy Topological Space, Bull. Korean Math. Soc., 37(1), 63-76.
XXVII. Lee, S.J. and Lee, E.P. (2004). Intuitionistic Fuzzy Proximity Spaces, IJMMS, 49, 2617-2628.
XXVIII. Mahbub, M.A., Hossain, M.S. and Hossain, M.A. (2018). Some Properties of Compactness in Intuitionistic Fuzzy Topological Spaces, Intern. J. of Fuzzy Mathematical Archive, 16(1), 39-48.
XXIX. Mahbub, M.A., Hossain, M.S. and Hossain, M.A. (2019). Separation Axioms in Intuitionistic Fuzzy Compact Topological Spaces, ISPACS, 2019(1), 14-23.
XXX. Mahbub, M.A., Hossain, M.S. and Hossain, M.A. (2019). ON Q-COMPACTNESS IN INTUITIONISTIC FUZZY TOPOLOGICAL SPACES, J. of Bangladesh Acad. Sci., 43(2), 197-203.
XXXI. Mahbub, M. A., M.S. Hossain and M. Altab Hossain, 2021. Connectedness concept in intuitionistic fuzzy topological spaces, Notes on Intuitionistic Fuzzy Sets, 27(1), 72-82.
XXXII. Minana, J.J. and Sostak, A. (2016). Fuzzifying topology induced by a strong fuzzy metric, Fuzzy Sets and Systems, 300, 24-39.
XXXIII. Ramadan, A.A., Abbas, S.E., Abd El-Latif, A.A. (2005). Compactness in Intuitionistic Fuzzy Topological Spaces, Int. J. of Math. And Mathematical Sciences, 2005(1), 19-32.
XXXIV. Singh, A.K. and Srivastava, R. (2012). SeparationAxioms in Intuitionistic Fuzzy Topological Spaces, Advances in Fuzzy Systems, 2012, 1-7.
XXXV. Ying-Ming, L. and Mao-Kang, L. (1997). Fuzzy Topology, World Scientific Publishing Co. Pte. Ltd..
XXXVI. Zadeh, L.A. (1965). Fuzzy sets, Information and Control, 8(3), 338-353.