Hareef Ahmed Keerio,Sallahuddin Panhwar,Sabab Ali Shah,Abdul Muntaqim Naji,Asim Ali,Adnan Aftab,



Meteorology,Climate change variance,Least Square Regression analysis,Hyderabad region,Temperature and precipitation variance ,


The purpose of the study was to investigate the variation in climatic parameters and possible climate effects in the Hyderabad region. The least-square regression method was used to find a linear change in climatic parameters (Temperature and Precipitation). The maximum, minimum, and mean temperatures; annual, and monsoon precipitations were considered under the study. In the last 100 years, the global temperature has been increased by 0.6 or 0.74 0C. In Hyderabad city, we predicted that the minimum temperature (Tmin), maximum temperature (Tmax), and mean temperature (Tmean) are varied in the range of 0.00490C/year to -0.01330C/year. The variability in the precipitation was observed in the last 30 years. Yearly and monsoon precipitation was decreasing with the rate of 1.24mm/year, and 1.34mm/year. The maximum precipitation occurs in July, August, and September; in the rest of the months, no or little precipitation occurred which may lead to a shortage of fresh water. 


I. Ali Engr Syed Shujaat, Engr Mohsin Iqbal, Engr Yaseen Mahmood, Engr Abdul Farhan, : ESTIMATION OF CLIMATE CHANGE INDUCED GROUND WATER LEVELS AND RECHARGE OF GROUND WATER BY PROPOSING RECHARGE WELLS AT NARAI KHWAR HAYATABAD PESHAWAR, J. Mech. Cont.& Math. Sci., Vol.-15, No.-1, January (2020) pp 312-327.
II. Ali Muhammad, Syed Asif Ali, Imtiaz Hussain, Faisal Nawaz, : RETURN LEVEL ESTIMATES OF MAXIMUM TEMPERATURE FOR DIFFERENT RETURN PERIOD, J. Mech. Cont.& Math. Sci., Vol.-15, No.-8, August (2020) pp 73-86
III. Ali, A. and O. Erenstein, Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management, 2017. 16: p. 183-194.
IV. Alamgir, A., et al., Vulnerability to climate change of surface water resources of coastal areas of Sindh, Pakistan. Desalination and Water Treatment, 2016. 57(40): p. 18668-18678.
V. Ackerman, F. and E.A. Stanton, Climate Impacts on Agriculture: A Challenge to Complacency? 2013.
VI. Bardin, M.Y. and T.V. Platova, Long-period Variations in Extreme Temperature Statistics in Russia as Linked to the Changes in Large-scale Atmospheric Circulation and Global Warming. Russian Meteorology and Hydrology, 2019. 44(12): p. 791-801.
VII. Babina, E.D. and V.A. Semenov, Intramonthly Variability of Daily Surface Air Temperature in Russia in 1970–2015. Russian Meteorology and Hydrology, 2019. 44(8): p. 513-522.
VIII. Bodansky, D., The United Nations framework convention on climate change: a commentary. Yale J. Int’l l., 1993. 18: p. 451.
IX. Chandio, A.A., H. Magsi, and I. Ozturk, Examining the effects of climate change on rice production: case study of Pakistan. Environmental Science and Pollution Research, 2020. 27(8): p. 7812-7822.
X. Chapra, S.C., Surface water-quality modeling. 2008: Waveland press.
XI. Change, I.C., Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, USA, 2014.
XII. Change, I.P.O.C., Climate change 2007: the physical science basis: summary for policymakers. Geneva: IPCC, 2007.
XIII. Cook, R.D. and S. Weisberg, An introduction to regression graphics. Vol. 405. 2009: John Wiley & Sons.
XIV. Cheema, S.B., et al., A comparison of minimum temperature trends with model projections. Pakistan Journal of Meteorology, 2011. 8(15).
XV. Commission, P., Task Force on Climate Change Final Report. 2010, Islamabad: Planning Commission of Government of Pakistan.
XVI. Fischer, E.M. and R. Knutti, Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 2015. 5(6): p. 560-564.
XVII. Golberg, M.A. and H.A. Cho, Introduction to regression analysis. 2004: WIT press.
XVIII. Hussain, S., S. Siddique, and A.A. Shah, Climate Change and Health Impacts in Pakistan, in Climate Change and Anthropogenic Impacts on Health in Tropical and Subtropical Regions. 2020, IGI Global. p. 1-18.
XIX. Hussain, M., et al., A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environmental monitoring and assessment, 2020. 192(1): p. 48.
XX. Israr, M., et al., Farming community perceptions about climate change in Khyber Pakhtunkhwa Pakistan. World Journal of Agricultural Research, 2016. 4(3): p. 70-76.
XXI. Khan, J.A., The climate of Pakistan. 1993: Rehbar Publishers.
XXII. Lysenko, S.A. and V.F. Loginov, Current Changes in Winter Air Temperature in the Middleand High Latitudes of the Northern Hemisphere. Russian Meteorology and Hydrology, 2020. 45(4): p. 219-226.
XXIII. Lawson, E.T., et al., Dealing with climate change in semi-arid Ghana: understanding intersectional perceptions and adaptation strategies of women farmers. GeoJournal, 2019: p. 1-14.
XXIV. Mahmood, R. and S. Jia, Analysis of causes of decreasing inflow to the Lake Chad due to climate variability and human activities. Hydrology and Earth System Sciences Discussions, 2018: p. 1-42.
XXV. Mustafa, Z. Climate change and its impact with special focus in Pakistan. in Pakistan Engineering Congress, Symposium. 2011. Lahore.
XXVI. Miller, S.J., The method of least squares. Mathematics Department Brown University, 2006. 114.
XXVII. Rasul, G. and B. Ahmad, Climate change in Pakistan. Pakistan Meteorological Department, 2012.
XXVIII. Sadiq, N. and M.S. Qureshi, Climatic variability and linear trend models for the five major cities of Pakistan. Journal of Geography and Geology, 2010. 2(1): p. 83.
XXIX. Tishchenko, V.A., et al., Monthly and Seasonal Prediction of Precipitation and Air Temperature in the Amur River Basin. Russian Meteorology and Hydrology, 2019. 44(3): p. 169-179.

View Download