Authors:
Rafiuddin,NoushimaHumera.G,DOI NO:
https://doi.org/10.26782/jmcms.2020.09.00002Keywords:
Oscillating channel,radiative heat transfer,mass transfer,volumetric flow rate,shear stress,Casson fluid,Abstract
The present investigation deals with the oscillatory flow of a Cassonfluid subjected to heat and mass transfer along a porous oscillating channel in presence of an external magnetic field.Here we consider the flow through a channel in which the fluid is injected on one boundary of the channel with a constant velocity,while it is sucked off at the other boundary with the same velocity.Galerkins technique is used to find expressions for the velocity, temperature, concentration of mass, volumetric flow rate, shear stress, rate of heat, and mass transfer andfound their numerical solutions.The effects of various parameters like Hartmann number,radiative parameter,Reynolds number, permeability parameter,Schimdth number on flow variables are discussed and shown graphically.Refference:
I. Adhikari,S.D and Mishra,J.C,”Unsteady two-dimensional hydromagneticflow and heat transfer of a fluid “,Int.J.Appl.Math and Mech,7(4),p.1-20,(2011)
II. Amjad Ali,Humayun Farooq, and Attia Fatima,Scientific Reports 10,Articlenumber 10629,(2020).
III. Bitta,P.,Kandala,T., and Iyengar,V., Nonlinear Analysis:Modelling and control,18(4), p.399-411,(2013).
IV. Casson N .,C.C Mill,Ed.pp 84-102,perganon press,London,UK(1959).
V. ChandraSekhar et.al,AIP Conference Proceedings 2112,020144,(2019).
VI. Dhal,R.K., Banamali Jena and Mariappan,M., International Research
Journal of Adv. Engineering and Science,vol 2,issue 3,p.220-223,(2017).
VII. Ganesh,Ismail and Anand,Int.J.A.M ,oct,(2018).
VIII. Goutam Chakraborty, SupriyaPanja, “STEADY FLOW OFMICROPOLAR FLUID UNDER UNIFORM SUCTION”, J. Mech. Cont. & Math. Sci., Vol.-4, No.-2, January (2010), pp 523-529
IX. Kiema,D.W.,Manyonge,W.A., and Bitok,J.K.,Int.J.Scientific Research
and innovative technology,vol 2,No 2, (2015).
X. Kirubha Shankar,Ganesh and Ismail,”Exact solution of unsteady MHD flow through parallel plates”, IJAMAE,vol 1,issue 1,
XI. Kalyan Kumar,Ch., and Suripeddi Srinivas,Engg.Transactions,65,3,p.461-481,(2017).
XII. Kumar,L.,Narayana,S,Chemical.Engg.Sci,65,p.5582-5587,(2010).
XIII. Lin,Y., Tan G., Phan-Thien,N., Khoo,B,J.non.newtonian.Fluid.Mech,12, p.13-17,(2014).
XIV. MakindeO.D and Aziz A,Int.J.Thermal Sci,vol 49,p.1813-1820,(2010).
XV. Malik,B.,Nanda,.,B.Das,D.Saha,Das,D.S., Paul,K., Sch.J.Eng.Tech,1(1),p.27-38,(2013).
XVI. Mandal,M.S.,Mukhopadhyay,S.,and Layek,G.C.,Theoret.Appl.Mech,39(3),p.209-231,2012.
XVII. Manyonge,W A,Bitok J.K and Dionysis,W.K.,American J. Computational and Appl. Mathematics,3,no 4,p.220-224,(2013).
XVIII. Mitra Asish, “NUMERICAL SIMULATION ON LAMINAR FREE
CONVECTION FLOW AND HEAT TRANSFER OVER A VERTICAL
PLATE WITH CONSTANT HEAT FLUX”,J. Mech. Cont. & Math.
Sci., Vol.-10, No.-2, January (2016), pp 1487-1499.
XIX.Mohammed.Y.Abou-Zeid, SehamS.El-Zahrain,Hesham MMansour,J.Nuclear and Particle Physics,4(3),p.100-115,(2014).
XX. Narender,G.,Sharma,G., and Goverdhan,K., CVR Jour.Sci andTech,vol 15,p.106-114,(2018).
XXI. NoushimaHumera .G.,Rafiuddin and S.Mustafa,European.Journal ofEngg and Technology,vol 8, No 1 p.,(2020).
XXII. NoushimaHumera,G and Rafiuddin,Int.J.Emerging.Tech.Adv.Engg.vol 10, issue 5,p.82,2020.
XXIII. Samuel O.Adesanya,J.A.Falade,Ukaegbu,J.C., and Adekeye,K.S., Journal of Mathematics,volume 2016,8 pages,(2016).
XXIV. Srinivas,S.,Vijayalakshmi,A., and Subramanyam Reddy,A.,Communications in Applied Analysis,21,No 3,p.431-448,(2017).
XXV. Venkateshwarlu M and Padma P, Procedia Engineering,vol 127,0.791-799,(2015).
XXVI. Wang CY,Journal of Applied Mechanics, vol 38,p.553-555,(1971).