NEW CONCEPTS ON R1 FUZZY SOFT BITOPOLOGICAL SPACE IN QUASI-COINCIDENCE SENSE

Authors:

Saikh Shahjahan Miah,Ruhul Amin,Raihanul Islam,Muhammad Shahjalal,Rezaul Karim,

DOI NO:

https://doi.org/10.26782/jmcms.2022.04.00006

Keywords:

Fuzzy soft set,Fuzzy soft bitopological Spaces,Quasi-coincidence,Fuzzy Soft R1 bitopological Space,Mappings,

Abstract

In this paper, three notions of  property in fuzzy soft bitopological spaces in the sense of quasi-coincidence for fuzzy soft points has been introduced and studied. Hereditary, productive, and projective properties are satisfied by these notions. Moreover, it is observed that all these concepts are preserved under one-one, onto, fuzzy open, and FSP continuous mappings.

Refference:

I. D. Molodtsov, Soft Set Theory First Results, Comput. Math. Appl., 37 (4-5), (1999), pp 19-31.
II. P. K. Maji, R. Biswas, A. R. Roy, Fuzzy Soft Sets, J. Fuzzy Math., 9 (3), (2001), pp 589-602.
III. D. Chen, E. C. C. Tsang, D. S. Yeung, X. Wang, The parameterization Reduction of Soft Set and Its Application, Computers and Mathematics with Applications, 49, (2005), pp 757-763.
IV. B. Ahmad, A. Kharal, On Fuzzy Soft Sets, Hindawi Publishing Corporation, Advances in Fuzzy Systems Article ID 586507, (2009).
V. S. Al Ghour, A. B. Saadon, On Some Generated Soft Topological Spaces and Soft Homogeneity, Heliyon, 5 (2009).
VI. H. Aktas, N. Cagman, Soft Sets and Soft Group, Information Science, 177 (2007), pp 2726-2735.
VII. Aziz-ul-Hakim, H. Khan, I. Ahmad, A. Khan, Fuzzy Bipolar Soft Semiprime Ideals in Ordered Semigroups, Heliyon, 7, (2021).
VIII. A. Aygunglu, H. Aygun, Introduction to Fuzzy Soft Groups, Comput. Math. Appl., 58, (2009), pp 1279-1286.
IX. S. Nazmul, S. K. Samanta, Soft Topological Groups, Kochi J. Math., 5, (2010), pp 151-161.
X. B. P. Varol, H. Aygun, Fuzzy Soft Topology, Hacettepe Journal of Mathematics and Statistics, 41 (3), (2012), pp 407-419.
XI. B. Tanay, M. B. Kandemir, Topological Structure of Fuzzy Soft Sets, Computer and Mathematics with Applications, 61, (2011), pp 2952-2957.
XII. S. S. Miah, M. R. Amin, M. Jahan, Mappings on Fuzzy (𝑇0) Topological Spaces in Quasi-coincidence Sense, J. Math. Comput. Sci., 7 (5), (2007), pp 883-894.
XIII. S. S. Miah, M. R. Amin, Certain Properties on Fuzzy (𝑅0) Topological Spaces in Quasi-coincidence Sense, Annals of Pure and Applied Mathematics, 14 (1), (2007), pp 125-131.
XIV. S. S. Miah, M. R. Amin, M. Shahjalal, Separation Axiom (𝑇0) on Fuzzy Bitopological Space in Quasi-coincidence Sense, GANIT J. Bangladesh Math. Soc., 40 (2), (2020), pp 156-162.
XV. M. R. Amin, M. S. Hossain, S. S. Miah, Fuzzy Pairwise Regular Bitopological Space in Quasi-coincidence Sence, J. Bangladesh Acad. Sci., 42 (2), (2020), pp 139-143.
XVI. S. Saleh, A. M. Abd El-Latif, A. Al-Salemi, On Separation Axioms in Fuzzy Soft Topological Spaces, South Asian Journal of Mathematics, 8 (2), (2018), pp 92-109.
XVII. M. Terepeta, On Separating Axioms and Similarity of Soft Topological Spaces, Soft Comput., 23, (2019), pp 1049-1057.
XVIII. M. Shabir, M. Naz, On Soft Topological Spaces, Comput. Math. Appl., 61, (2011), pp 1786-1799.
XIX. S. Hussain, B. Ahmad, Soft Separation Axioms in Soft Topological Spaces, Hacettepe Journal of Mathematics and Statistics, 44 (3), (2015), pp 559-568.
XX. O. Gocur, A. Kopuzlu, On Soft Separation Axioms, Ann. Fuzzy Math. Inform., 9 (5), (2015), pp 817-822.
XXI. S. Mishra, R. Srivastava, On 𝑇0 and 𝑇1 Fuzzy Soft Topological Spaces, Ann. Fuzzy Math. Inform., 10 (4), (2015), pp 591-605.
XXII. R. Amin, R. Islam, New Concepts on 𝑅1 Fuzzy Soft Topological Spaces, Ann. Fuzzy Math., 22 (2), (October 2021), pp 123-132.
XXIII. S. Mishra, R. Srivastava, Hausdorff Fuzzy Soft Topological Spaces, Ann. Fuzzy Math. Inform., 9 (2), (2015), pp 247-260.
XXIV. S. Roy, T. K. Samanta, A Note on Fuzzy Soft Topological Spaces, Ann. Fuzzy Math. Inform., 5 (2), (2012), pp 305-311.
XXV. A. S. Atmaca, I. Zorlutuna, On Fuzzy Soft Topological Spaces, Ann. Fuzzy Math. Inform., 5 (2), (2013), pp 377-386.
XXVI. K. V. Babitha, J. J. Sunil, Soft Set Relations and Functions, Comput. Math. Appl., 60 (7), (2010), pp 1840-1849.

View Download