Neurobiological Function Analysis of Naturally Generated Seeds Optimization Using Evolutionary Techniques


Patrali Pradhan,Paromita Das,Sanjeev Kumar Ojha,Moumita Ghosh,Soumendu Ghosh,Biswarup Neogi,



Neurobiological,Plant Neural System, Artificial Neural Network,Hybrid model,


An automated hybrid model, called the Plant Neural System Model (PNSM), is introduced in this approach. Plants can process biochemical signals throughcertain biological processes even they don’t have brains. Important biological processes, like seed germination, root growth, and nutrient absorption by the cell are considered as these are the foundations of neuron systems in plants. Neurobiological processes have been adapted to develop a hybrid black box model with time-dependent functions like Artificial Neural Network (ANN) and the use of some advanced optimization techniques. This model would be useful in the analysis of soil parametric relations with both seed germination and seed optimization in order to classify plant seeds.


I.Brady, S. M., & Provart, N. J. (2009). Web-queryable large-scale data sets for hypothesis generation in plant biology. The Plant Cell, 21(4), 1034-1051.

II.Bray, J. R. (1963). Root production and the estimation of net productivity. Canadian Journal of Botany, 41(1), 65-72.

III.Bar-Yosef, B., Lambert, J. R., & Baker, D. N. (1982). Rhizos: A simulation of root growth and soil processes. Sensitivity analysis and validation for cotton. Transactions of the ASAE, 25(5), 1268-1273.

IV.Coruzzi, G. M., Burga, A. R., Katari, M. S., & Gutiérrez, R. A. (2009). Systems biology: principles and applications in plant research. Plant Systems Biology, Annual Plant Reviews. London, UK: Wiley-Blackwell, 3-40.

V.Chen, D. X., & Lieth, J. H. (1992). Two-dimensional model of water transport in the root zone and plant for container-grown chrysanthemum. Agricultural and forest meteorology, 59(3-4), 129-148.

VI.Coile, T. S. (1952). Soil and the growth of forests. In Advances in Agronomy (Vol. 4, pp. 329-398). Academic Press.

VII.Demir, I., Mavi, K., Kenanoglu, B. B., & Matthews, S. (2008). Prediction ofgermination and vigour in naturally aged commercially available seed lots of cabbage (Brassica oleracea var. capitata) using the bulk conductivity method. Seed Science and Technology, 36(3), 509-523.

VIII.Gago, J. (2009). Biotecnología de Vitis vinifera L.: Modelización mediante Inteligencia Artificial (Doctoral dissertation, Doctoral Thesis, Universidade de Vigo, Vigo, Spain).

IX.Gago, J., Martínez-Núñez, L., Landín, M., & Gallego, P. P. (2010). Artificial neural networks as an alternative to the traditional statistical methodology in plant research. Journal of plant physiology, 167(1), 23-27.

X.Hammer, G. L., Sinclair, T. R., Chapman, S. C., & Van Oosterom, E. (2004). On systems thinking, systems biology, and the in silico plant. Plant Physiology, 134(3), 909-911.

XI.Johnson, I. R., & Thornley, J. H. M. (1985). Temperature dependence of plant and crop process. Annals of Botany, 55(1), 1-24.

XII.Kitano, H. (2002). Systems biology: a brief overview. Science, 295(5560), 1662-1664.

XIII.Meyer, F. H., & Gottsche, D. (1971). Distribution of root tips and tender roots of beech. Ellenberg, Heinz Integrated Experimental Ecology.

XIV.Prasad, V. S. S., & Gupta, S. D. (2008). Applications and potentials of artificial neural networks in plant tissue culture. In Plan Tissue Culture Engineering (pp. 47-67). Springer Netherlands.

XV.Struik, P. C., Yin, X., & de Visser, P. (2005). Complex quality traits: now time to model. Trends in Plant Science, 10(11), 513-516.

XVI.Samimy, C., Taylor, A. G., & Kenny, T. J. (1987). Relationship of germination and vigor tests to field emergence of snap beans (Phaseolus vulgaris L.). Journal of Seed Technology, 23-34.

XVII.Sehirali, S. (1991). Seed and seed technology. Turkish, Istanbul, 422

XVIII.Tardieu, F. (2003). Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in plant Science, 8(1), 9-14.

XIX.Uzun, S., Marangoz, D., & Özkaraman, F. (2001). Modelling the time elapsing from seed sowing to emergence in some vegetable crops. Pakistan Journal of Biological Sciences, 4(4), 442-445.

XX.White, E. H., Pritchett, W. L., & Robertson, W. K. (1971). Slash pine root biomass and nutrient concentrations. Maine Agr Exp Sta Misc Rep.

XXI.Weidenhamer, J. D., Morton, T. C., & Romeo, J. T. (1987). Solution volume and seed number: Often overlooked factors in allelopathic bioassays. Journal of Chemical Ecology, 13(6), 1481-1491.

XXII.Westgate, M. E., & Boyer, J. S. (1985). Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta, 164(4), 540-549.

XXIII.Yuan, J. S., Galbraith, D. W., Dai, S. Y., Griffin, P., & Stewart Jr, C. N. (2008). Plant systems biology comes of age. Trends in plant science, 13(4), 165-171.

Author(s): Patrali Pradhan, Paromita Das, Sanjeev Kumar Ojha, Moumita Ghosh, Soumendu Ghosh, Biswarup Neogi View Download