Sadaqat Hussain,Zahid Hussain,Shahid Hussain,Raziuddin Siddiqui,



Grassmannian complex,Configuration,Vector Space,Cross-Ratio,Tangent Complex,


Grassmannian bi-complex contains two types of differential maps  and . This complex is related to the Tangent complex by Siddiqui for the differential map. In this article, we try to find morphisms in tangential configuration space to relate Grassmannian complex and first-order tangent complex for differential map d'.


I. Bloch, S. and Esnault, H., The additive dilogarithm, Kazuya Kato’s Fiftieth birthday, Doc. Math. , Extra Vol. 131-155(2003).

II. Cathelineau, J-L., Remarques sur les Di_érentielles des Polylogarithmes Uniformes, Ann. Inst. Fourier, Grenoble 46, 1327-1347(1996).

III. Cathelineaue, J-L., Infinitesimal polylogarithms, Multiplicative Presentation of Kaheler deferential and Goncharove Complexes, talk at the workshop on Polylogarithms,Essen, May 1-4(1997).

IV. Elbaz-Vincent Ph. and Gangl, H., On Poly (ana) logs I, Compositio Mathematica, 130, 161-210 (2002).

V. Goncharov, A.B.. Polylogarithms and Motivic Galois Groups, Proceedings of the Seattle conf. on motives, Seattle July 1991, AMS Proceedings of Symposia in Pure Mathematics 2, 55 43-96.

VI. Goncharov, A.B., (1995). Geometry of Configurations, Polylogarithms and Motivic Cohomology, Adv. Math., 144 197-318(1994).

VII. Goncharov, A.B. Deninger’s conjecture on L-functions of elliptic Curves at s = 3, J. Math. Sci. 81, N3, 2631-2656, alg-geom/9512016. MR 1420221 (98c:19002) (1996).

VIII. Oliver Petras, Functional Equations of Polylogarithms in Motivic Cohomology. geb. in Frankfart am main mainz, den 27. Marz (2008).

IX. S. Hussain and R.Siddiqui, Projected Five Term Relation in TB_2^2 (F), International Journal of Algebra, Vol. 6, no. 28, 1353 – 1363 (2012).
X. S. Hussain and R. Siddiqui, R. (2012). Morphisms Between Grassmannian Complex and Higher Order Tangent Complex, Communications in Mathematics and Applications, Vol. 10(3), 509-518 (2019).

XI. S. Hussain and R. Siddiqui, Grassmannian Complex and Second Order Tangent Complex, Punjab University Journal of Mathematics, Vol. 48(2), 91-111 (2016).

XII. S. Hussain and R. Siddiqui, Projective Configurations And The Variant Of Cathelineaus Complex, Journal of Prime Research in Mathematics, Vol. 12, 24-34 (2016).

XIII. Siegel, C.L. Approximation algebraischer Zahlen, Mathem. Ze/tschr.10 173-213(1921).

XIV. Suslin, A.A. K3 of a field, and the Bloch group. Galois Theory, rings, Algebraic Groups and their applications (Russian). Turdy Mat. Inst.Steklove.183, 180-199,229 (1990).

XV. Siddiqui, R.. Tangent to Bloch-Suslin and Grassmannian Complexes Over the dual numbers, arXiv:1205.4101v2 [math.NT] (2012).

View Download