Muhammad Aadil,Sheeraz Ahmed,Muhammad Zubair,M.Saeed Hussain kakar,Muhammad Junaid,Ata-ur-Rehman,




Tissues temperature,Attenuation,WSNs,Load balancing,Network Lifetime,residual energy,


Wireless Body Area Sensor Network (WBANs) are used to measure the biological parameters of a human body in a critical health situation. Sensors use an antenna and electromagnetic radiations to drive the response towards the sink node. Our research focuses on the overheating problem of body tissues due to the electromagnetic field generated by electromagnetic radiations. When sensor nodes continuously send and receive the data, it not only influences the communication between the nodes by stimulating high attenuation for signal transmission, but also conduits various health problems. These health issues may include reducing blood flow, affecting the enzymatic reactions, brain tumor, damaging the sensitive tissues and leading to tissue cancer. The exposition of such issues are addressed in our research called iBTTA (Improved Body Tissue Temperature Aware)routing scheme, where not only the temperature of a body tissues is controlled under the threshold value but significantly improves the performance in terms of its throughput, end- to- end delay and transmission loss. The scheme is an extension of our previously published scheme BTTA. The validation of our scheme iBTTA is done through comparison with already existing techniques SIMPLE (Stable Increased-throughput Multi-hop Protocol for Link Efficiency in WBANs) and LAEEBA (Link-Aware and Energy Efficient scheme for WBANs). In iBTTA we have improved the problem of the body tissues temperature, utilization of battery power and load balancing techniques in WBANs.


I.Abdellah, Ezzati, S. A. I. D. Benalla, AbderrahimBeniHssane, and MoulayLahcenHasnaoui. “Advanced low energy adaptive clustering hierarchy.”Proceedings of the International Journal on Computer Science and Engineering (IJCSE)2, no. 7 (2010): 2491-2497.6.

II.Adhikary, Sriyanjana, SankhayanChoudhury, and SamiranChattopadhyay. “A new routing protocol for WBAN to enhance energy consumption and network lifetime.” InProceedings of the 17th International Conference on Distributed Computing and Networking, p. 40. ACM, 2016.16.

III.Afridi, A., NadeemJavaid, S. Jamil, M. Akbar, Zahoor Ali Khan, and Umar Qasim. “HEAT: Horizontal Moveable Energy-efficient Adaptive Threshold-Based Routing Protocol for Wireless Body Area Networks.” InAdvanced Information Networking and Applications Workshops (WAINA),2014 28th International Conference on, pp. 474-478. IEEE, 2014.17.

IV.Ahmed, S., Nadeem Javaid, SidrahYousaf, Ashfaq Ahmad, Muhammad Moid Sandhu, Muhammad Imran, Zahoor Ali Khan, and N. Alrajeh. “Co-LAEEBA: Cooperative link aware and energy efficient protocol for wireless body area networks.”Computers in Human Behavior51 (2015): 1205-1215.3

V.Ahmed, S., NadeemJavaid, M. Akbar, AdeelIqbal, Z. A. Khan, and U. Qasim. “LAEEBA: Link aware and energy efficient scheme for body area networks.” InAdvanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on, pp. 435-440. IEEE, 2014.12.

VI.Anand, Jyoti, and Deepak Sethi. “Comparative analysis of energy efficient routing in WBAN.” InComputational Intelligence & Communication Technology (CICT), 2017 3rd International Conference on, pp. 1-6. IEEE, 2017.10.

VII.Asif, Amna, and Irshad Ahmed Sumra. “Applications of Wireless Body Area Network (WBAN): A Survey.” (2017).1.

VIII.Awan, Khalid, KashifNaseerQureshi, and MehwishMehwish. “Wireless Body Area Networks Routing Protocols: A Review.”Indonesian Journal of Electrical Engineering and Computer Science4, no. 3 (2016): 594-604.Gfggg.5.

IX.Effatparvar, Mehdi, Mehdi Dehghan, and Amir MasoudRahmani. “A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.”Journal of medical systems40, no. 9 (2016): 201.7.

X.Khan, Rahat Ali, Khalid Hussain Mohammadani, Azhar Ali Soomro, Jawad Hussain, Sadia Khan, Tahir Hussain Arain, and Hima Zafar. “An energy efficient routing protocol for wireless body area sensor networks.”Wireless Personal Communications99, no. 4 (2018): 1443-1454.20.

XI.Manirabona, Audace, SaadiBoudjit, and Lamia ChaariFourati. “Energy aware routing protocol for inter WBANs cooperative Communication.” InNetworks, Computers and Communications (ISNCC), 2015 International Symposium on, pp. 1-6. IEEE, 2015.4.

XII.Naik, M. Raj Kumar, and P. Samundiswary. “Wireless body area network security issues—Survey.” InControl, Instrumentation, Communication and Computational Technologies (ICCICCT), 2016 International Conference on, pp. 190-194. IEEE, 2016.8.

XIII.Qureshi, KashifNaseer, Faisal Bashir, and Abdul Hanan Abdullah. “An energy and link aware next node selection protocol for body area networks.” InInformation Networking (ICOIN), 2018 International Conference on, pp. 721-726. IEEE, 2018.9.

XIV.Sahndhu, Muhammad Moid, NadeemJavaid, Muhammad Imran, Mohsen Guizani, Zahoor Ali Khan, and Umar Qasim. “BEC: A novel routing protocol for balanced energy consumption in Wireless Body Area Networks.” InWireless Communications and Mobile Computing Conference (IWCMC), 2015 International, pp. 653-658. IEEE, 2015.15.

XV.Smail, Omar, AddaKerrar, Youssef Zetili, and Bernard Cousin. “ESR: Energy aware and Stable Routing protocol for WBAN networks.”InWireless Communications and Mobile Computing Conference (IWCMC), 2016 International, pp. 452-457. IEEE, 2016.11.

XVI.Talha, Sadaf, Rizwan Ahmad, and Adnan Khalid Kiani. “Priority based energy aware (pea) routing protocol for wbans.” InVehicular Technology Conference (VTC Fall), 2015 IEEE 82nd, pp. 1-5. IEEE, 2015.2.

XVII.Thotahewa, Kasun MS, Jean-Michel Redoutè, and Mehmet RasitYuce. “Propagation, power absorption, and temperature analysis of UWB wireless capsule endoscopy devices operating in the human body.”IEEE Transactions on Microwave Theory and Techniques63, no. 11 (2015): 3823-3833.13.

XVIII.ul Islam, Saif, Ghufran Ahmed, MahamShahid, Najmul Hassan, Muhammad Riaz, Hilal Jan, and AzfarShakeel. “Implanted Wireless Body Area Networks: Energy Management, Specific Absorption Rate and Safety Aspects.” InAmbient Assisted Living and Enhanced Living Environments, pp. 17-36. 2017.18.

XIX.Wu, Tin-Yu, and Cheng-Han Lin. “Low-SAR path discovery by particle swarm optimization algorithm in wireless body area networks.”IEEE Sensors Journal15, no. 2 (2015): 928-936.19.

XX.Yousaf, S., S. Ahmed, M. Akbar, Nadeem Javaid, Zahoor Ali Khan, and Umar Qasim. “Co-CEStat: Cooperative Critical Data Transmission in Emergency in Static Wireless Body Area Network.” InBroadband and Wireless Computing, Communication and Applications (BWCCA), 2014 Ninth International Conference on, pp. 127-132. IEEE, 2014.14

Muhammad Aadil, Sheeraz Ahmed, Muhammad Zubair, M.Saeed Hussain kakar, Muhammad Junaid, Ata-ur-Rehman View Download