Dheyaa A. Khalaf,Karima E. Amori,Firas M.Tuaimah,




Solar collector,magnetic nanofluid,Ferrofluid,Parabolic solar trough collector,Solar energy,electromagnetic field,Nanofluid,


In this paper, collection of research related to the effect of using nanofluids of various kinds on improving heat transfer and increasing the efficiency of solar collectors was reviewed on the other hand studies will be presented regarding the effect of electromagnetic field on improving heat transfer and its effect on solar collectors. In this paper, we have examined the electromagnetic effect of thermo-hydrodynamics behavior of nanofluid. The results of the previous research that was reviewed clearly showed that the use of nanofluids has a clear effect on improving the thermal efficiency of solar collectors and improving heat transfer in high proportions, as well as between studies that adding the effect of electromagnetic overflow on solar collector systems has had a positive effect in improving heat transfer and improving properties Physical fluid


I. Abdulhassan A. K., Laith J. H., Ali H, A., “The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe”, Al-Khwarizmi Engineering Journal.; 12,99-109, (2016).
II. Alsaady M., Fu R., Yan Y., Liu Z., Wu S., Boukhanouf R., “An Experimental Investigation on the Effect of Ferrofluids on the Efficiency of Novel Parabolic Trough Solar Collector Under Laminar Flow Conditions”, Journal Heat Transfer Engineering.; (2018).
III. Aminfar H., Mohammad P. M., Mohseni F., “Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields”, Journal Magn. Magn. Mater.;324, 830-842, (2012).
IV. Amir H., Hossein A. D. A.,KouroshA.,“Investigating the MHD current in presence of nanofluid inside a triangle duct in presence of electromagnetic field in form of Eulerian two phases”, Journal of Materials and Environmental Sciences.; 9, 2703-2713, (2018).
V. Ashorynejad H. R., Mohamad A. A., Sheikholeslami M., “Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using lattice Boltzmann method”, International Journal Thermall Science.;64, 240-250, (2013).
VI. Azizian R., Doroodchi E., McKrell T., Buongiorno J., Hu LW., Moghtaderi B., “Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids”, International Journal Heat Mass Transf.; 68,94-109, (2014).
VII. Battira M., Rachid B., “Radial and Axial Magnetic Fields Effects on Natural Convection in a Nanofluid-filled Vertical Cylinder”, Journal of Applied Fluid Mechanics.; 9, 407-418, (2016).
VIII. Bradic J., Fan J., Wang W., “Penalized composite quasi-likelihood for ultrahigh-dimensional variable selection”, Journal of Royal Statistics Society.; 73, 325-349, (2011)

IX. Ellahi R., Bhatti M., Khalique C. M., “Three-dimensional flow analysis of Carreau fluid model induced by peristaltic wave in the presence of magnetic field”, Journal Mol. Liquid.; 241,1059-1068,(2017).
X. Faizal M., Saidur R., Mekhilef S., “Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid”, 4th International Conference on Energy and Environment (ICEE), Conf.Series: Earth and Environmental Science.; 16, 012004, (2013).
XI. Gan J. G., Stanley C., Nguyen N-T., Rosengarten G., “Ferrofluids for heat transfer enhancement under an external magnetic field”, International Journal of Heat and Mass Transfer.; 123, 110-121, (2018).
XII. Ghadiri M., Sardarabadi M., Pasandideh M., Moghadam A. J., “Experimental investgation of a PVT system performance using nanoferrofluid”, Energy Conversion and Management.; 103,468-476, (2015).
XIII. Ghofrani A., Dibaei MH., Hakim S. A., Shafii MB., “Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field”,Expermaintal Thermal Fluid Science.; 49,193-200, (2013).
XIV. Hariri S., Mokhtari M., Gerdroodbary M. B., Fallah K., “Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field”, Eur. Phys. Journal Plus.;132,1-14, (2017).
XV. Hatami N., Banari A. K., Malekzadeh A., Pouranfard A. R., “The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube”, Phys. Lett. Sect. A Gen. At. Solid State Phys.: 381, 510-515, (2017).
XVI. He Y., Wang S., Ma J., Tian F., Ren Y., “Experimental study on the light-heat conversion characteristics of nanofluids”,Nanosci. Nanotechnol Letters;. 3, 494-496, (2011).
XVII. Heidary H., Kermani M. J., DABIR B., “Magnetic Field Effect on Convective Heat Transfer Incorrugated Flow Channel” 21, 2105-2115, (2017).
XVIII. Heris S. Z., Etemad SG., Esfahan MN., “Experimental investigation of oxide nanofluids laminar flow convective heat transfer”, International Communication of Heat Mass Transfer;. 33, 529-535, (2006).

XIX. Ho C., Tsing-Tshih T., Chii-Ruey L., Hong-Ming L., Chung-Kwei L., Chih-Hung L., Hung-Ting S., “A Study of Magnetic Field Effect on Nanofluid Stability of CuO”, Materials Transactions.; 45, 1375-1378, (2004).
XX. Hussein A. K., Ashorynejad H. R., Sheikholeslami M., Sivasankaran S., “Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field”,Nucl. Eng. Des.;268,10-17, (2014).
XXI. Irwan N., Iskandar I. Y., Mohd R. J., “Enhancement of thermal conductivity and kinematic viscosity in magnetically controllable maghemite (c-Fe2O3) nanofluids”, Experimental Thermal and Fluid Science.; 77,265-271, (2016).

XXII. Kefayati G. R., Tang H., “Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model”, International Jornal Hydrogen Energ.; 42,17284-17327, (2017).
XXIII. Khalipe V., Deshmukh P., “Experimental study of evacuated tube two phase closed thermpsyphon (TPCT) solar collector with nanofluid”, Journal of Mechanical and Civil Engineering.; 32,156-161, (2015).
XXIV. Khosravi A., Malekan M., “Effect of magnetic field on heat transfer coefficient of Fe3O4-water ferrofluid using artificial intelligence and CFD simulation”, Eur. Phys. J. Plus; (in preparation), (2018).
XXV. Khullar V., Tyagi H , Phelan P. E., OtanicarT. P. , HarjitS.,TaylorR. A., “Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector”, Journal of Nanotechnology in Engineering and Medicine.; 3, 031003, (2013).
XXVI. Lajvardi M., Moghimi-Rad J., Hadi I., Gavili A., Dallali I. T., Zabihi F., “Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect”, Journal MagnMagn Mater.;322,3508-13, (2010).
XXVII. Lee J-H., Lee S-H., Choi C. J., Jang S, P., Choi S. U. S., “A Review of Thermal Conductivity Data,Mechanisms and Models for Nanofluids”, nternational Journal of Micro-Nano Scale Transport.;1, 269-322, (2010).
XXVIII. Li Y., Zhou J., Tung S., Schneider E., Xi S., “A review on development of nanofluid preparation and characterization”, Powder Technology.; 196, 89-101, (2009).
XXIX. Lin T. F., Gilbert J. B., Roy G. D., “Analyses of magnetohydrodynamic propulsion with seawater for underwater vehicles”, Journal Propul Power.; 7,1081-1083, (1991).
XXX. Maouassi A., Baghidja A., Daoud S., Zeraibi N., “Numerical study of nanofluid heat transfer SiO2 through a solar flat plate collector”, International Journal Of heat and Technology.; 35, 619-625, (2017).
XXXI. Mohammad M., Ali K., Xiaowei Z., “The influence of magnetic field on heat transfer of magnetic nanofluid in a double pipe heat exchanger proposed in a small-scale CAES system”, Applied Thermal Engineering (2018).
XXXII. Mohsen S., Davood D. G., “Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method”, Physica A: Statistical Mechanics and its Applications.; 417, 273-286, (2015).
XXXIII. Mohsen S., Mofid G. B., Ellahibc A. Z., “Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces”, Journal of Magnetism and Magnetic Materials.; 369, 69-80, (2014).
XXXIV. Mohsen S., Mofied G-B.,Ganji D-D., “Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid”, International Communications in Heat and Mass Transfer.; 39, 978-986, (2012).

XXXV. Mohsen S., Mohammad M. R., “Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid”, Journal of the Taiwan Institute of Chemical Engineers.;56, 6-15,(2015).
XXXVI. Mokhtari M., Hariri S., Gerdroodbary M. B., Yeganeh R., “Effect of non-uniform magnetic field on heat transfer of swirling ferrofluid flow inside tube with twisted tapes”, Chemeical Eng. Process. Process Intensif.;117,70-79, (2017).
XXXVII. Naphon P., Wiriyasart S., “Experimental study on laminar pulsating flow and heat transfer of nanofluids in micro-fins tube with magnetic fields”, International Journal Heat Mass Transfer.; 118,297-303, (2018).
XXXVIII. Omid M., Ali K., Soteris, Kalogirou A., Loan P., Somchai W., “A review of the applications of nanofluids in solar energy”, International Journal of Heat Mass Transfer.; 57, 582-594, (2013).

XXXIX. Sardarabadi M., Passandideh-Fard M., Zeinali HS., “Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)”, Energy Journal.; 66,264-72, (2014).
XL. Servati A. A., Javaherdeh K., Ashorynejad H. R., “Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method”,Advanc Powder Technol,;25, 666-675, (2014).
XLI. Seth G. S., Mandal P. K., “Gravity –driven convective flow of magnetite –water nanofluid and radiative heat transfer past an oscillating vertical plate in the presence of magnetic field”, Latin American Applied Research.; 48,7-13, (2018).
XLII. Sha L., Ju Y., Zhang H., Sha H. Z. L., Ju Y., “The influence of the magnetic field on the convective heat transfer characteristics of Fe3O4/water nanofluids”, Appl. Therm. Eng.; 126, 108-116, (2017).
XLIII. Sheikholeslami M., Gerdroodbary M. B., Mousavi S. V., Ganji D. D., Moradi R., “Heat transfer enhancement of ferrofluid inside an 90° elbow channel by non-uniform magnetic field”, Journal Magn. Magn. Mater.; 460, 302-311, (2018).
XLIV. SheikhzadehG A, Sebdani1 M S , Mahmoodi M , Elham S , Hashemi S E . “Effect of a Magnetic Field on Mixed Convection of a Nanofluid in a Square Cavity”, Journal of Magnetics.;18, 321-325, (2012).
XLV. Tripathi D., Bhushan S., Bg O. A., “Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects”, Colloid. Surf.; 506, 32-39, (2016).
XLVI. Yang Y. T., Wang Y. H., Tseng P. K., “Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids”, International Commun. Heat Mass.;55,5891-5898, (2013).
XLVII. Yousefi T., Veysi F., Shojaeizadeh E., Zinadini S., “An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors”,Renew Energy.; 39, 293-298, (2012).

View Download