Development of a RGB-based model for predicting SPAD value and chlorophyll content of betel leaf (Piper betleL.)


Amar Kumar Dey,P. Guha,Manisha Sharma,M.R. Meshram,



Chlorophyll,SPAD,RGB,mage processing, AIC,BIC,


Three different techniques were assessed for estimation of chlorophyll content from each leaf samples. In the first method SPAD-502 hand held meter was used to estimate SPAD values of leaf. In the second method flatbed scanner was used to acquire the sample leaf image for estimation of SPAD and Chlorophyll concentration. The third method was biochemical based spectrophotometric approach for estimating chlorophyll concentration.Extensive statistical analysis based on Information criterion theory was made for selection and evaluation of proposed RGB image processing based color model for estimating SPAD value and chlorophyll concentration. The resultsrevealed that image processing techniques has good potential in estimating SPAD and chlorophyll concentration values relative to biochemical method using spectroscopic technique and SPAD meter reading. The present study also pointed out the fact that for the SPAD value and chlorophyll concentration estimation using proposed image processing technique gives better results with dual color band as compared to single or triple color band.Furthermore, estimated SPAD value and chlorophyll concentration differ from Image processing technique (photometric) measurement of leaf samples by 5.538% (p<0.001) and 0.0185% (p<0.001), respectively.


I.Adkison, M. D., Peterman, R. M., Lapointe, M. F., Gillis, D. M., and Korman, J. (1996). Alternative models of climatic effects on sockeye salmon, Oncorhynchusnerka, productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia.Fisheries Oceanography,5(3‐4), 137-152.

II.Afshari-Jouybari, H., and Farahnaky, A. (2011). Evaluation of Photoshop software potential for food colorimetry.Journal of Food Engineering,106(2), 170-175.

III.Bannari, A., Khurshid, K., Staenz, K., and Schwarz, J. (2006). Wheat Crop Chlorophyll Content Estimation From Ground-Based Reflectance Using Chlorophyll Indices, IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, 2006, pp. 112-115. doi: 10.1109/IGARSS.2006.34.

IV.Curran, P. J., Dungan, J. L., and Gholz, H. L. (1990). Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol., 7, 33–48.

V.Dey, A. K., Sharma, M., and Meshram, M. R. (2016a). Image Processing Based Leaf Rot Disease, Detection of Betel Vine (Piper BetleL.).Procedia Computer Science,85, 748-754.

VI.Dey, A. K., Sharma, M., and Meshram, M. R. (2016b). An Analysis of Leaf Chlorophyll Measurement Method Using Chlorophyll Meter and Image Processing Technique.Procedia Computer Science,85, 286-292.

VII.Filella, I., Serrano, I., Serra, J., and Peñuelas, J. (1995) Evaluating wheat nitrogen status with canopy relfectance indices and discriminant analysis. Crop Sci., 35, 1400–1405.

VIII.Gitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.Journal of plant physiology,160(3), 271-282.

IX.Glatting, G., Kletting, P., Reske, S. N., Hohl, K., and Ring, C. (2007). Choosing the optimal fit function: comparison of the Akaike information criterion and the F-test.Medical physics,34(11), 4285-4292.

X.Graeff, S., Pfenning, J., Claupein, W., and Liebig, H. P. (2008). Evaluation of image analysis to determine the N-fertilizer demand of broccoli plants (Brassica oleraceaconvar. botrytis var. italica).Advances in optical technologies,2008, 8.doi:10.1155/2008/359760.

XI.Guendouz, A., Guessoum, S.,Maamari, K., and Hafsi, M. (2012). Predicting the efficiency of using the RGB (Red, Green and Blue) reflectance for estimating leaf chlorophyll content of Durum wheat (Triticum durum Desf.) genotypes under semi arid conditions.American-Eurasian Journal of Sustainable Agriculture, 102-107.Guha, P. (2006). Betel leaf: the neglected green gold of India.J Hum Ecol, 19 (2), 87-93.

XII.Gupta, S. D., Ibaraki, Y., and Pattanayak, A. K. (2013). Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants.Plant biotechnology reports,7(1), 91-97.

XIII.Hu, H., Liu, H. Q., Zhang, H., Zhu, J. H., Yao, X. G., Zhang, X. B., and Zheng, K. F. (2010, December). Assessment of chlorophyll content based on image color analysis, comparison with SPAD-502. IEEE, 2nd International Conference onInformation Engineering and Computer Science (ICIECS), 1-3.

XIV.Kawashima, S., and Nakatani, M. (1998). An algorithm for estimating chlorophyll content in leaves using a video camera.Annals of Botany,81(1), 49-54.

XV.Liangliang, J., Chen, X., Zhang, F., Buerkert, A., and Romheld, V. (2004). Use of digital camera to assess nitrogen status on winter wheat in the northern china plain. Journal of Plant Nutrition 27: 441-450.

XVI.Pagola, M., Ruben, O., Ignacio, I., Humberto, B., Edurne, B., Pedro, A. T., Carmen, L., and Berta, L. (2009). New method to assess barley nitrogen nutrition status based on image color analysis comparison with SPAD-502. Computers and Electronics in Agriculture, 65, 213-218.

XVII.Peng, S., García, F. V., Laza, R. C., and Cassman, K. G. (1993). Adjustment for specific leaf weight improves chlorophyll meter’s estimate of rice leaf nitrogen concentration.Agronomy Journal,85(5), 987-990.

XVIII.Pydipati, R., Burks, T. F.,and Lee, W. S. (2006). Identification of citrus disease using color texture features and discriminate analysis. Computers and Electronics in Agriculture, 52, 49-59.

XIX.Ritz, C., and Spiess, A. N. (2008). qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics,24(13), 1549-1551.

XX.Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986). Akaike Information Statistics. KTK Scientific Publishers, D. Reidel Publishing, Tokyo, Dordrecht.

XXI.Shukla, A. K., Ladha, J. K., Singh, V. K., Dwivedi, B. S., Balasubramanian, V., Gupta, R. K., and Padre, A. T. (2004). Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a systems perspective.Agronomy Journal,96(6), 1606-1621.

XXII.Spiess, A. N., and Neumeyer, N. (2010). An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach.BMC pharmacology,10(1), 6.

XXIII.Su, C. H., Fu, C. C., Chang, Y. C.,Nair, G. R., Ye, J. L., Chu, I., and Wu, W. T. (2008). Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three‐color analysis.Biotechnology and bioengineering,99(4), 1034-1039.

XXIV.Teoh, C. C., Daud, A. H., Mispan, M. R., and Jiken, J. J. (2015). Prediction of SPAD chlorophyll meter readings using remote sensing technique.Journal of Tropical Agriculture and Food Science,40, 127-136.

XXV.Vollmann, J., Sato, T., Walter, H., Schweiger, P., and Wagentristl, H. (2011). Soybean di-nitrogenfixation affecting photosynthesis and seed quality characters.Soil, Plant and Food Interactions, 496-502.

XXVI.Wang, Y., and Liu, Q. (2006). Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of stock–recruitment relationships.Fisheries Research,77(2), 220-225.

XXVII.Wang, Y., Wang, D., Shi, P., and Omasa, K. (2014). Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light.Plant methods,10(1), 1-11.

XXVIII.Wood, C. W., Reeves, D. W., and Himelrick, D. G. (1993). Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: a review.Proceedings of the Agronomy Society of New Zealand, 23, 1-9.

XXIX.Yadav, S. P., Ibaraki, Y., and Gupta, S. D. (2010). Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell, Tissue and Organ Culture (PCTOC),100(2), 183-188.

XXX.Yoshida, S., Forno, D. A., and Cock, J. H. (1971). Laboratory manual for physiological studies of rice,Los Baños, Philippines.

Autho(s):Amar Kumar Dey, P. Guha, Manisha Sharma and M.R. Meshram View Download