Kamran Malik,Abdul Wasim Shaikh,Muhammad Mujtaba Shaikh,



Timoshenko beam,Finite-difference solution,Rotation,Displacement,Constant load,Variable load,Interpolation,


We propose and implement a finite difference scheme for the numerical solution of the Timoshenko beam model without locking phenomenon. The averaging concept is used in approximating the function, and thus developing the scheme for elements. Finally, the system is discretized into the algebraic system using the proposed scheme and the numerical solution is attained. The numerical solutions are attained for a constant load and a variable load comprising linear and exponential functions. The mathematical model of the Timoshenko beam (TB) problem in the form of a boundary-value problem has been solved successfully for the rotation and displacement parameters. The results agree with other schemes in the literature for various values of the parameter and step size.


I. Cheng XL, Han W, Huang HC (1997). Finite element methods for Timoshenko beam, circular arch and Reissner-Mindlin plate problems. J. Comput. Appl. Math.,79(2): 215-234.
II. Cheng XL, Xue WM (2002). Linear finite element approximations for the Timoshenko beam and the shallow arch problems. J. Comput. Math., 20: 15-22.
III. D. N. Arnold (1981). Discretization by finite elements of a model parameter dependent problem. Numer. Math., 37 (3): 405-421.
IV. Faisal Hayat Khan, M. Fiaz Tahir, Qaiser uz Zaman Khan. : ‘NUMERICAL SIMULATION AND PERFORMANCE EVALUATION OF BEAM COLUMN JOINTS CONTAINING FRP BARS AND WIRE MESH ARRANGEMENTS.’ J. Mech. Cont. & Math. Sci., Vol.-16, No.-2, February (2021) pp 112-131. DOI : 10.26782/jmcms.2021.02.00010
V. Jou J, Yang SY (2000). Least-squares Finite element approximations to the Timoshenko beam problem, Appl. Math. Comput, 115(1): 63-75.
VI. Khalid H. Malik, Sanaullah Dehraj, Sindhu Jamali, Sajad H. Sandilo, Asif Mehmood Awan. : ‘ON TRANSVERSAL VIBRATIONS OF AN AXIALLY MOVING BEAM UNDER INFLUENCE OF VISCOUS DAMPING.’ J. Mech. Cont.& Math. Sci., Vol.-15, No.-11, November (2020) pp 12-22. DOI : 10.26782/jmcms.2020.11.00002
VII. Li L (1990). Discretization of the Timoshenko beam problem by the p and h/p versions of the finite element method. Numer. Math., 57(1): 413-420.
VIII. Li, F.L., Sun, Z.Z. (2007). A finite difference scheme for solving the Timoshenko beam equations with boundary feedback. J. Comput. Appl. Math., 200: 606–627.
IX. Loula AFD, Hughes TJR, Franca LP (1987). Petrov-Galerkin formulations of the Timoshenko beam problem. Comput.Meth. Appl. Mech. Eng., 63(2): 115-132.
X. Loula AFD, Hughes TJR, Franca LP, Miranda I (1987). Stability, convergence and Accuracy of a new finite element method for the circular arch problem.Comput.Meth.Eng., 63(3): 281-303.
XI. Sun, Z.Z., Zhu, Y.L. (2004). A second order accurate difference scheme for the heat equation with concentrated capacity. Numer. Math., 97: 379–395.
XII. Timoshenko SP (1921). On the correction for shear of the differential equation for transverse Vibrations of prismatic bars, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,, 41(245): 744-746.
XIII. W. Shaikh, XL Cheng (2013). Two non-standard finite difference schemes for the Timoshenko beam. AJMCSR Vol. 5(6): 107 –111.
XIV. Wang, Z.S. (2002). A second order L8 convergent difference scheme for linear hyperbolic equation with derivative boundary conditions. Numer. Math. J. Chinese Univ., 3: 212–224.
XV. Xu, G.Q., Feng, D.X. (2002). The Riesz basis property of a Timoshenko beam with boundary feedback and application. IMA Journal of Appl. Math., 67: 357 370.
XVI. Yan, Q.X., Feng, D.X. (2003). Feedback stabilization of nonuniform Timoshenko beam with dynamical boundary. Control Thery Appl., 20(5): 673–677.
XVII. Zietsman L., Van Rensburg, N.F.J., Van der Merwe, A.J. (2004). A Timoshenko beam with tip body and boundary damping. Wave Motion., 39: 199–211.

View Download