A Review on the Development of Customized Ankle Foot Orthosis for Foot Drop using Additive Manufacturing Processes

Authors:

Nagarjuna Maguluri,Gamini Suresh,Kunchala Balakrishna,Emani Sivakrishna,

DOI NO:

https://doi.org/10.26782/jmcms.2020.07.00058

Keywords:

Additive Manufacturing,Ankle Foot Orthosis,Gait Performance,Material Properties,Thermoforming Process,

Abstract

Ankle foot orthosis (AFO) device improves the walking ability by hold and directs the position and advancement of the lower limb, specifically ankle movement. The primary function of AFO is to correct the deformities of the damaged nerves and compensate for the weak & paralyzed muscles. Traditional AFOs are handcrafted using plaster moulds for generating patient’s geometry, by a thermoforming process. Hence, the fabrication of a customized AFO consumes more time and expense as well. In the current review paper, it is discussed thoroughly about the upcoming technology known as additive manufacturing and its potential application for the production of customized AFOs. This review aimed to present the different AFOs produced by the additive manufacturing processes along with gait performances and material properties compared to the traditionally manufactured AFOs.

Refference:

I. A. D. Maso and F. Cosmi, “ScienceDirect 3D-printed ankle-foot orthosis : a design method,” Mater. Today Proc., vol. 12, pp. 252–261, 2019, doi: 10.1016/j.matpr.2019.03.122.
II. A. Haleem and M. Javaid, “3D scanning applications in the medical field: A literature-based review,” Clin. Epidemiol. Glob. Heal., vol. 7, no. 2, pp. 199–210, 2019, doi: 10.1016/j.cegh.2018.05.006.
III. ASTM International, “F2792-12a – Standard Terminology for Additive Manufacturing Technologies,” Rapid Manuf. Assoc., pp. 10–12, 2013, doi: 10.1520/F2792-12A.2.
IV. C. E. Dombroski, M. E. R. Balsdon, and A. Froats, ” The use of a low-cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC,” BMC Res. Notes, vol. 7, p. 443, 2014, doi: 10.1186/1756-0500-7-443.
V. C. Mavroidis et al., “Patient specific ankle-foot orthoses using rapid prototyping,” J. Neuroeng. Rehabil., vol. 8, no. 1, pp. 1–11, 2011, doi: 10.1186/1743-0003-8-1.

VI. D. Torricelli et al., “Human-like compliant locomotion: State of the art of robotic implementations,” Bioinspiration and Biomimetics, vol. 11, no. 5, 2016, doi: 10.1088/1748-3190/11/5/051002.
VII. E. S. Schrank, L. Hitch, K. Wallace, R. Moore, and S. J. Stanhope, “Assessment of a virtual functional prototyping process for the rapid manufacture of passive-dynamic ankle-foot orthoses,” J. Biomech. Eng., vol. 135, no. 10, pp. 1–7, 2013, doi: 10.1115/1.4024825.
VIII. E. S. Schrank and S. J. Stanhope, “Dimensional accuracy of ankle-foot orthoses constructed by rapid customization and manufacturing framework,” J. Rehabil. Res. Dev., vol. 48, no. 1, pp. 31–42, 2011, doi: 10.1682/JRRD.2009.12.0195.
IX. F. S. Shahar et al., “A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for an ankle-foot orthosis,” J. Mech. Behav. Biomed. Mater., vol. 99, no. June, pp. 169–185, 2019, doi: 10.1016/j.jmbbm.2019.07.020.
X. H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive manufacturing methods and modelling approaches : a critical review,” pp. 389–405, 2016, doi: 10.1007/s00170-015-7576
XI. J. Graham, “Foot drop: Explaining the causes, characteristics, and treatment,” Br. J. Neurosci. Nurs., vol. 6, no. 4, pp. 168–172, 2010, doi: 10.12968/bjnn.2010.6.4.47792.
XII. J. P. Deckers, M. Vermandel, J. Geldhof, E. Vasiliauskaite, M. Forward, and F. Plasschaert, “Development and clinical evaluation of laser-sintered ankle foot orthoses,” Plast. Rubber Compos., vol. 47, no. 1, pp. 42–46, 2018, doi: 10.1080/14658011.2017.1413760.
XIII. L. Aydin and S. Kucuk, “A method for more accurate FEA results on a medical device developed by 3D technologies,” Polym. Adv. Technol., vol. 29, no. 8, pp. 2281–2286, 2018, doi: 10.1002/pat.4339.
XIV. L. S. Milusheva, D. Tochev, “Virtual models and prototype of an individual ankle-foot orthosis. In ISB XXth Congress—ASB29th Annual Meeting, 2005, Cleveland, Ohio,” p. 2004, 2004.

XV. M. Alam, I. A. Choudhury, A. Bin Mamat, and S. Hussain, “Computer aided design and fabrication of a custom articulated ankle-foot orthosis,” J. Mech. Med. Biol., vol. 15, no. 4, pp. 1–14, 2015, doi: 10.1142/S021951941550058X.
XVI. M. Alam, I. A. Choudhury, and A. Bin Mamat, “Mechanism and Design Analysis of Articulated Ankle Foot Orthoses for Drop-Foot,” vol. 2014, 2014.
XVII. M. C. Faustini, R. R. Neptune, R. H. Crawford, and S. J. Stanhope, “Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering,” IEEE Trans. Biomed. Eng., vol. 55, no. 2, pp. 784–790, 2008, doi: 10.1109/TBME.2007.912638.

XVIII. M. S. Alqahtani, A. Al-Tamimi, H. Almeida, G. Cooper, and P. Bartolo, “A review on the use of additive manufacturing to produce lower limb orthoses,” Prog. Addit. Manuf., no. 0123456789, 2019, doi: 10.1007/s40964-019-00104-7.
XIX. M. Walbran, K. Turner, and A. J. McDaid, “Customized 3D printed ankle-foot orthosis with adaptable carbon fiber composite spring joint,” Cogent Eng., vol. 3, no. 1, pp. 1–11, 2016, doi: 10.1080/23311916.2016.1227022.
XX. N. G. Harper, E. M. Russell, J. M. Wilken, and R. R. Neptune, “Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: A comparison of patient walking performance,” J. Biomech. Eng., vol. 136, no. 9, 2014, doi: 10.1115/1.4027755
XXI. N. Guo and M. C. Leu, “Additive manufacturing: Technology, applications and research needs,” Front. Mech. Eng., vol. 8, no. 3, pp. 215–243, 2013,doi: 10.1007/s11465-013-0248-8.
XXII. O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters : a review of current research and future prospects,” pp. 42–53, 2015, doi: 10.1007/s40436-014-0097-7.
XXIII. O. Ciobanu and M. Rotariu, “Photogrammetric scanning and applications in medicine,” Appl. Mech. Mater., vol. 657, pp. 579–583, 2014, doi: 10.4028/www.scientific.net/AMM.657.579.
XXIV. Pallari, J. H. P., Dalgarno, K. W., Munguia, J., Muraru, L., Peeraer, L., Telfer, S., & Woodburn, “Design and additive fabrication of foot and ankle-foot orthoses. In 21st Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, SFF, Austin, TX.,” pp. 834–845, 2010.
XXV. R. Banga, H.K., Belokar, R.M., Kalra, P. and Kumar, “‘Fabrication and stress analysis of ankle-foot orthosis with additive manufacturing,’ Rapid Prototyping Journal, Vol. 24 No. 2, pp. 301-312. https://doi.org/10.1108/RPJ-08-2016-0125.”
XXVI. R. K. Chen, L. Chen, B. L. Tai, Y. Wang, A. J. Shih, and J. Wensman, “Additive manufacturing of personalized ankle-foot orthosis,” Trans. North Am. Manuf. Res. Inst. SME, vol. 42, no. January, pp. 381–389, 2014.
XXVII. S. E. Brown, E. Russell Esposito, and J. M. Wilken, “The effect of ankle-foot orthosis alignment on walking in individuals treated for traumatic lower extremity injuries,” J. Biomech., vol. 61, pp. 51–57, 2017, doi: 10.1016/j.jbiomech.2017.06.037.
XXVIII. S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, “Additive manufacturing and its societal impact: A literature review,” Int. J. Adv. Manuf. Technol., vol. 67, no. 5–8, pp. 1191–1203, 2013, doi: 10.1007/s00170-012-4558-5.
XXIX. S. Kumar, “Selective Laser Sintering: A Qualitative and Objective Approach,” Jom, vol. 55, no. 10, pp. 43–47, 2003, doi: 10.1007/s11837-003-0175-y.

XXX. S. Milusheva, E. Tosheva, D. Tochev, and Y. Toshev, “Personalized Ankle Foot Orthosis With Exchangeable Elastic Elements,” J. Biomech., vol. 40, no. 6, p. S592, 2007, doi: 10.1016/s0021-9290(07)70580-8.
XXXI. R. Kudelski, R.; Dudek, P.; Kulpa, M.; Rumin, “Using reverse engineering and rapid prototyping for patient specific orthoses. 2017 XIIIth International Conference, Perspective Technologies and Methods in MEMS Design (MEMSTECH) : proceedings : Polyana, April 20-23, 2017,” pp. 88–90, 2017.
XXXII. S. Telfer, J. Pallari, J. Munguia, K. Dalgarno, M. McGeough, and J. Woodburn, “Embracing additive manufacture: Implications for foot and ankle orthosis design,” BMC Musculoskelet. Disord., vol. 13, 2012, doi: 10.1186/1471-2474-13-84.
XXXIII. T. T. Chu, “Biomechanics of ankle-foot orthoses: Past, present, and future,” Top. Stroke Rehabil., vol. 7, no. 4, pp. 19–27, 2001, doi: 10.1310/t35k-rx68-vqrv-rvpf.
XXXIV. V. Creylman, L. Muraru, J. Pallari, H. Vertommen, and L. Peeraer, “Gait assessment during the initial fitting of customized selective laser sintering ankle-foot orthoses in subjects with drop foot,” Prosthet. Orthot. Int., vol. 37, no. 2, pp. 132–138, 2013, doi: 10.1177/0309364612451269.
XXXV. Y. H. Cha et al., “Ankle-foot orthosis made by 3D printing technique and automated design software,” Appl. Bionics Biomech., vol. 2017, 2017, doi: 10.1155/2017/9610468.

View Download