Journal Vol – 8 No -1, July 2013

Method of Solution to the Over-Damped Nonlinear Vibrating System with Slowly Varying Coefficients under Some Conditions


Pinakee Dey



A simple analytical solution extended to certain damped-oscillatory nonlinear systems with varying coefficients. The solution obtained for different initial conditions for a second order nonlinear system show a good coincidence with those obtained by numerical method. The method is illustrated by an example


damped nonlinear systems,KBM method ,eigen-value,


I.Krylov, N. N. and, Bogoliubov N.N., Introduction to Nonlinear Mechanics, Princeton University Press, New Jersey 1947..

II.Bogoliubov, N. N. and Mitropolskii Yu., Asymptotic Methods in the Theory of nonlinear Oscillations, Gordan and Breach, New York 1961.

III. Mitropolskii, Yu., Problems on Asymptotic Methods of Non-stationary Oscillations, (in Russian), Izdat, Nauka, Moscow 1964..

IV.Popov P., “A generalization of the Bogoliubov asymptotic method in the theory of nonlinear oscillations”, Dokl.Akad. Nauk SSSR 111, 308-310 (in Russian) 1956..

V.Murty S. N., Deekshatulu B. L. and Krisna G., “General asymptotic method of Krylov-Bogoliubov for over-damped nonlinear system”, J. Frank Inst. 288, 49-46, 1969.

VI.Alam Shamsul M., “Asymptotic methods for second-order over-damped and critically damped nonlinear system”, Soochow J. Math, 27, 187-200, 2001 .

VII.Alam Shamsul M., “A unified Krylov-Bogoliubov-Mitropolskii method for solving nth order nonlinear systems”, Journal of the Franklin Institute 339, 239-248, 2002.

VIII.Nayfeh A. H., Introduction to perturbation Techniques, J. Wiley, New York, 1981.

View Download

Vibration of Orthotropic Circular Plate with Thermal Effect in Exponential Thickness and Quadratic Temperature Distribution


Anukul De , D. Debnath



The object of this paper is to investigate the vibration problem of orthotropic circular plate with exponentially varying thickness in the radial direction subject to quadratic temperature distribution. The equation of equilibrium for the above mentioned plate is obtained. The differential equation of equilibrium is solved using the Frobenius method. The frequency equation for clamped plate and simply supported plate are obtained. For both the boundary condition the variations of deflection with radial distance are shown graphically for first mode of vibration.


orthotropic circular plate ,quadratic temperature distribution,Frobenius method,


I. Banerjee, J.R., Su, : ‘Free vibration of rotating tapered beams using the dynamic stiffness method’, Journal of sound and vibration, vol. 298, no. 4-5, pp. 1034.

II. Chaudhari, T. D. : ‘A study of vibration of geometrically segmented beams with and without crack’, International Journal of solids and structures, vol. 37, pp. 761.

III.Gupta, A. K., Khanna, A. and Gupta, D. V. ,(2009) : ‘Free vibration of clamped visco- elastic rectangular plate having bi-direction exponentially thickness variations’, Journal of theoretical and applied mechanics, vol. 47, no. 2, pp. 457.

IV. Khanna, A., Sharma, A. K., Singh, H. and Magotra, V. K., (2011) : ‘Bi-parabolic thermal effect on vibration of visco-elastic square plate’, Journal of applied Mathematics and Bioinformatics, vol. 1, no. 2, pp. 39.

V. Kumar, R. and Partap, G.,(2009) : ‘Axisymmetric free vibrations in a microstretch thermoelastic homogeneous isotropic plate’, International Journal of Mechanics and Engineering, vol. 14, no. 1, pp. 211.

VI. Lal, R., (2003) : ‘Transverse vibrations of orthotropic non-uniform rectangular plate with continuously varying density’, Indian Journal of pure and applied mathematics, vol. 34, no. 4, pp. 587.

VII. Li, S. R. and Zhou, Y. H. ,(2001) : ‘Shooting method for non linear vibration and thermal buckling of heated orthotropic circular plate’, Journal of sound and vibration, vol.328, no. 2, pp. 379.

VIII. Nowacki, W., (1962) : Thermoelasticity, Pergamon Press, New York..

IX. Qin, S., (1994) : ‘Bending problems of non-homogeneous cylindrical orthotropic circular plate’, Applied Mathematics and Mechanics (English edition), vol.15, no.10, pp.965.

X. Tomar, J. S. and Gupta, A. K., (1985) : ‘Thermal effect on axi-symmetric vibrations of an orthotropic circular plate of parabolically varying thickness’, Indian Journal pure and applied mathematics, vol. 16, no. 5, pp. 537.

XI. Warade, R. W. and Deshmukh, K. C.,(2004) : ‘Thermal deflection of thin clamped circular plate due to a partially distributive heat supply’, GANIT, vol. 55, no. 2, pp. 179.

View Download

Uncharged Massless Particle Tunneling from Kerr-Newman-NUT Blackhole


M. Abdullah Ansary , MD. Ismail Hossain



By applying Parikh-Wilczek’s semi-classical tunneling method we obtain the emission rate of massless uncharged particle at the event horizon of Kerr-Newman-NUT blackhole. We consider the spacetime background is dynamical and incorporate the self-gravitation effect of the emitted particles when energy conservation and angular momentum conservation are taken into account. We find that the emission rate at the event horizon is equal to the difference of Bekenstein-Hawking entropy before and after emission.


Uncharged particle ,Kerr-Newman-NUT blackhole ,emission rate ,Bekenstein-Hawking entropy,


I. Hawking S.W.; Nature (London)248,30 (1974) , Commun. Math. Phys. 43, 199(1975).

II. Hawking S.W.; Phys. Rev. D14,2460(1976); 72,084013(2005).

III. Qing-Quan Jiang, Shuang-Qing Wu, Xu- Cai; “ Hawking radiation as tunneling from Kerr and Kerr-Newman blackholes” . hep-th/0512351.

IV. Hartle J. B. and Hawking S.W.; Phys. Rev. D13, 2188(1976).

V. Krause P. and Wilezek F.; Nucl. Phys. B 433(1995) 403, gr-qc/9406042.

VI. Parikh M. K. and Wilezek F.; Phys. Rev. Lett.85,5042(2000) ; hepth/9907001.

VII. Parikh M. K; Phys. Lett. B 546,189(2002) ; hep-th/0204107.

VIII. Parikh M. K; hep-th/ 0402166.

IX.Parikh M. K; Int. J. Mod. Phys. D 13,2351(2004). [ Gen. Rel. Grav. 36, 2419(2004), hep-th/0405160]

X. Zhang J., Zheng Zhao; Phys. Lett. B 618(2005)14

XI. Liu W.; Chinese Journal of physics, Vol.45, No.1(2007) February.

XII. Sarkar S., Kothawala D.; gr-qc/07094448

XIII. Zhang J., Zheng Zhao; gr-qc/0512153.

XIV. Qing-Quan Jiang, Shuang-Qing Wu, Xu- Cai; hep-th/0512351(2006)

XV. Kerner R., Mann R. B.; hep-th/08032246.

XVI. Xiao-Xiong Zeng, Hang-Song Hou and Shu-Zheng Yang; PRAMANA, Journal of Physics, Vol. 70, No.3, March(2008).

XVII. Ya-Peng Hu, Jing-Yi Zhang, Zheng Zhao; gr-qc/09012680.

XVIII. Kerner R., Mann R. B. ; gr-qc/0603019.

XIX. Gillani U. A., Rehman M. and Saifullah K.; hep-th/11020029.

XX. Bilal M. and Saifullah K.; gr-qc/10105575.

XXI. Rehman M. and Saifullah K.; hep-th/10115129.

XXII. Huei-Chan Lin and Chopin Soo; gr-qc/0905-3244.

XXIII. Arzano M., Medved A. J. M., Elias C. Vagenas; hep-th/0505266

XXIV. Angheben M., Nadalini M., Vanzo L. and Zerbini S.; hep-th/0503081.

XXV. Yang-Geng Miao, Zhao Xue and Shao-Jun Zhang; hep-th/10122426.

XXVI. T. Jian, Chan-Bing-Bing; ACTA PHYSICA POLONICA B , Vol.40(2009) No.2

XXVII. Majhi B. R.; hep-th/08091508.

XXVIII. Matsuno K. and Umetsu K.; hep-th/11012091.

XXIX. Ali M. H.; gr-qc/ 07063890.

XXX. Ali M. H.; gr-qc/ 07071079

XXXI. W. liu; New coordinates of BTZ Black Hole and Hawking radiation via tunneling.

XXXII. Medved A.J.M.; hep-th/0110289

XXXIII. Shuang-Qing Wu, Qing-Quan Jiang; hep-th/0602033

XXXIV. Grifiths J. B. and Podolsky J.; Class Quantum Grav.22(2005)3467.

XXXV. Grifiths J. B. and Podolsky J.; Phys. Rev. D 73(2006)044018.

XXXVI. Plebnski J. F. and Demianski M.; Am. Phys. NY 98(1970)98

XXXVII. Usman A. Gillani, Mudassar Rehman and Saifullah K.; ; hep-th/11020029.

XXXVIII. Painleve , P. (1921); Comptes Rendus de l’ Academic des Sciences, Serie I ( Mathematique) 173,677.

XXXIX. Landau L. D., Lifshitz E. M., the classical theory of field, Pergaman, London(1975).

XL. Zhang H., Zhao Z. , Beijing J. Normal Univ.(Natural Sci.) 37(2001)471(in Chinese).

XLI. (10)Jingyi Zhang, Zheng Zhao; Phys. Lett. B 618(2005)14-22.

XLII. Bardeen J. M., Carter B., Hawking S. W., Commun. Math. Phys. 31(1973)161.

XLIII. J. Zhang and Zheng Zhao; JHEP 10(2005)055.

XLIV. Makela J. and Repo P.; Phys. Rev.D 57, 1899(1998).

XLV. Dadhich N. and Turakulov Z. Ya.; Class Quantum Grav. 19(2002) 2765

XLVI. Li Hui-Ling, YANG Shu-Zheng and QI De-Jiang; commun. Theor. Phys. (Beijing China) 46(2006) PP.991-994.

XLVII. Griffiths J. B. and Podolosky J.; gr-qc/0507021.

XLVIII. LEI Jie-Hong, LIU Zhi-Xiang and YANG Shu-Zheng; Commun. Theor. Phys. (Beijing, China)49 (2008) pp. 133-136 , Vol.49 No.1January 15,2008.

XLIX. Krause P. and E.Keski Vakkuri; Nucl. Phys. B491(1977)219. R. Parentani Nucl. Phys. B 575(2000) 333.

L. Srinivasan K. and Padmanabhan T.; Phys. Rev.D60, 024007(1999) ; gr-qc/9812028

LI. Shankaranarayann S, Srinivasan K. and Padmanabhan T. ; Mod. Phys. Lett. A 16,571(2001); gr-qc/0007022.

LII. Shankaranarayann S, Srinivasan K. and Padmanabhan T.; Class quant. Grav.19,2671(2002) ; gr-qc/0010042.

LIII. Shankaranarayann S.; Phys. Rev. D 67,084026(2003); gr-qc/0301090.

LIV. Vagenas E. C.; Nuovo Cim. B 117,899(2002) ; hep-th/0111047.

LV. Frolov V. P. and Novikov I. D.; “Blackhole physics , Basic concepts and New developments” Kluwer Academic Publishers ,1998.

View Download

Emotion Detection using Fuzzy Logic


Sudipta Ghosh, Sanjib Ghosh, Arpan Dutta , Gopal Paul



Aim of this paper is providing a novel method for evaluating emotion ilicitation procedures based on emotion recognition. Attention should be paid to physiological signals for emotion recognition compared to audiovisual emotion channels such as facial expression or speech. This paper focuses on an idea to define emotion from different perspectives and explore possible causes and variations of different parameters. Here the authors determined the scope of fuzzy relational approach to human emotion identification from facial expression. Initially the facial features are extracted from selective regions which are fuzzified and mapped onto an emotion space. This has been implemented using Mamdani type relational model. In subsequent stages Max-min inverse fuzzy relation has been used to determine the fuzziness of emotions if values of facial expressions are known.


facial features ,emotion ,fuzzy relation,Mamdani type,


I.Datcu Dragos, Rothkrantz Léon J. M., “Emotion recognition using bimodal data fusion,”. CompSysTech 2011,122-128.

II.Zia Uddin Md., Lee J. J., Kim T.-S., “Independent shape component-based human activity recognition via Hidden Markov Model,” Appl. Intell. 33(2), 193-206 (2010)

III.Yang Yong, Zhengrong Chen, Liang Zhu, Wang Guoyin “Attribute Reduction for Massive Data Based on Rough Set Theory and MapReduce,” RSKT 2010, 672-678.

IV.Chuan-Yu Chang, Shang-Cheng Li, Pau-Choo Chung, Jui-Yi Kuo, Yung-Chin Tu: “Automatic Facial Skin Defect Detection System,” BWCCA 2010, 527-532.

V.O. A. Uwechue and S. A. Pandya, “Human Face Recognition Using Third-Order Synthetic Neural Networks,” Boston, MA: Kluwer,

VI.Bhavsar A. and Patel H. M., “Facial Expression Recognition Using Neural Classifier and Fuzzy Mapping,” IEEE Indicon 2005 Conference, Chennai, India.

VII.Guo Yimo, Gao Huanping, “Emotion Recognition System in Images Based On Fuzzy Neural Network and HMM,” Proc. 5th IEEE Int. Conf. on Cognitive Informatics (ICCI’06), IEEE 2006

VIII.Chakraborty A., Konar A., Chakraborty U. K. and Chatterjee A., “Emotion Recognition From Facial Expressions and Its Control Using Fuzzy Logic”, IEEE Transactions on Systems, Man and Cybernetics, IEEE 2009

IX.Zadeh L. A., “Fuzzy Sets”, Information and Control, vol. 8, no. 3, pp. 338-353, 1965.

X.Mendel J.M and Wu D., Perceptual Computing, IEEE Press, Wiley Publications, 2010.

XI.Cordon O., M. J del Jesus, Herrera F., “A proposal on reasoning methods in fuzzy rule-based classification systems,” Int. J. of Approximate Reasoning, Vol. 20, pp. 21-45, 1999.

XII.Das S., Halder A., Bhowmik P., Chakraborty A., Konar A., Nagar A. K., “Voice and Facial Expression Based Classification of Emotion Using Linear Support Vector,” 2009 Second International Conference on Developments in eSystems Engineering, IEEE 2009

XIII.Kharat G.U. and Dudul S.V., “Emotion Recognition from Facial Expression Using Neural Networks,” Human-Computer Sys. Intera., AISC 60, pp. 207–219 Springer-Verlag Berlin Heidelberg 200

View Download

Some Properties of the congruences of a Near lattice


Mizanur Rahman, A.S.A.Noor



By a near lattice we mean a meet semi lattice with the property that any two elements possessing a common upper bound, have a supremum. In this paper, we have studied some properties of congruences in near lattices. For a near lattice S, if n is an upper and neutral then the set of all finitely generated n-ideals )S(Fnis a lattice. Here we have provided an isomorphism between the lattice of congruences ))S(F(Cn and )S(C.We also showed that if n is a central element of a distributive near lattice S, then ))S(F(I)S(Inn≅If and only if )S(Fn is generalized Boolean, where )S(In is the lattice of all n-ideals of S. Finally we include some equivalent conditions for the permutability of the smallest congruences )I(Θ containing the n-ideals I, when S is a distributive medial near lattice and n is an upper element.


near lattice,semi lattice ,congruences ,ideals,


I.M.G. Hossain and Noor A.S.A., n-deals of a nearlattice .J.Sc.The Rajshahi University Studies 28(2000) 105-111

II.Latif M. A., n-ideals of a lattice, Ph.D Thesis , Rajshahi University (1994).

III.Noor A.S.A. and Cornish W.H., Around a neutral element of a near lattice, Comment. Math. Univ. Carolinae. 28(2) (1987) 199-210.

IV.A.S.A.Noor and M.A.Latif, Finitely generated n-ideals of a lattice, SEA Bull .Math. 22(1998)72-79.

V.Noor A.S.A. and Rahman M.B., Congruence relation in a distributive nearlattice, The Rajshahi University studies (part B) 23-24(1996),195-202.

VI.Noor A.S.A. and Akhtar Shiuly, On Congruences corresponding to n-ideals in a distributive nearlattice, The Rajshahi University Studies (Part B), 31(2003) 107-114.

VII.Rahman M., On finitely generated n-ideals of a near lattice, Ph.D Thesis, Rajshahi University (2006).

View Download