ENHANCED FIXED POINT RESULTS IN G-METRIC SPACES VIA MANN ITERATION AND RATIONAL-TYPE CONTRACTIONS

Authors:

Maitreyee Dey,Hiral Raja,Vasavi Cheruku,

DOI NO:

https://doi.org/10.26782/jmcms.2026.02.00002

Keywords:

G-metric space,Fixed point,Mann iteration,Rational contraction,G-convergence,Iterative approximation,

Abstract

In this work, we use the Mann iteration process rather than the conventional Picard operator to extend fixed point findings in G-metric spaces. Mann iteration is known to provide better convergence properties and stability in fixed point approximations, particularly in cases where Picard iteration fails due to weak contractive conditions. We present a new family of?rational-type contractive conditions and prove the existence and uniqueness of fixed points of single-valued mappings in G-complete G metric spaces. Specifically, we improve upon existing theorems in the literature both by generalizing their?statements as well as strengthening their use through an improved iterative scheme.

Refference:

I. Aldwoah, K., Shah, S. K., Hussain, S., Almalahi, M. A., Arko, Y. A. S., & Hleili, M. (2024). Investigating fractal fractional PDEs, electric circuits, and integral inclusions via (?, ?)-rational type contractions. Scientific Reports, 14(23546), 1–15. 10.1038/s41598-024-74046-8
II. Acar, Ö. (2023). Some recent and new fixed point results on orthogonal metric-like space. Constructive Mathematical Analysis, 6(3), 184–197. 10.33205/cma.1360402
III. Alqahtani, B., Alzaid, S. S., Fulga, A., & Roldán López de Hierro, A. F. (2021). Proinov type contractions on dislocated b-metric spaces. Advances in Difference Equations, 2021(164), 1–16. 10.1186/s13662-021-03329-5
IV. Ege, O., Park, C., & Ansari, A. H. (2020). A different approach to complex valued Gb-metric spaces. Advances in Difference Equations, 2020(152), 1–13. 10.1186/s13662-020-02605-0
V. Imdad, M., Alfaqih, W. M., & Khan, I. A. (2018). Weak ?-contractions and some fixed point results with applications to fractal theory. Advances in Difference Equations, 2018(1), 439. 10.1186/s13662-018-1900-8.
VI. Kumar, M., Ege, O., Mor, V., Kumar, P., & De la Sen, M. (2024). Boyd-Wong type contractions in generalized parametric bipolar metric space. Heliyon, 10(1), e23998. 10.1016/j.heliyon.2024.e23998
VII. Yildirim, I., & Khan, S. Hussain. (2022). Convexity in G-metric spaces and approximation of fixed points by Mann iterative process. International Journal of Nonlinear Analysis and Applications, 13(1), 1957–1964. 10.22075/ijnaa.2021.21435.2259.
VIII. Gaba, Y. U. (2017). Fixed point theorems in G-metric spaces. Journal of Mathematical Analysis and Applications, 455(1), 528–537. 10.1016/j.jmaa.2017.05.062
IX. Kanwal, S., Waheed, S., Rahimzai, A. A., & Khan, I. (2024). Existence of common fuzzy fixed points via fuzzy F-contractions in b-metric spaces. Scientific Reports, 14(7807), 1–14. 10.1038/s41598-024-58451-7
X. Karap?nar, E., Chen, C.-M., Alghamdi, M. A., & Fulga, A. (2021). Advances on the fixed point results via simulation function involving rational terms. Advances in Difference Equations, 2021(409), 1–20. 10.1186/s13662-021-03564-w
XI. Okeke, G. A., Francis, D., & de la Sen, M. (2020). Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with applications. Heliyon, 6(9), e04785. 10.1016/j.heliyon.2020.e04785
XII. Rao, N. S., & Kalyani, K. (2020). Unique fixed point theorems in partially ordered metric spaces. Heliyon, 6(11), e05563. 10.1016/j.heliyon.2020.e05563
XIII. Rao, N. S. (2022). Coupled fixed points of (??, ??, ??)-contractive mappings in partially ordered b-metric spaces. Heliyon, 8(12), e12442. 10.1016/j.heliyon.2022.e12442
XIV. Rao, N. S., Aloqaily, A., & Mlaiki, N. (2024). Results on fixed points in b-metric space by altering distance functions. Heliyon, 10(7), e33962. 10.1016/j.heliyon.2024.e33962
XV. Rasham, T., Shoaib, A., Park, C., Agarwal, R. P., & Aydi, H. (2021). On a pair of fuzzy mappings in modular-like metric spaces with applications. Advances in Difference Equations, 2021(245), 1–17. 10.1186/s13662-021-03398-6
XVI. Rasham, T., Asif, A., Aydi, H., & De La Sen, M. (2021). On pairs of fuzzy dominated mappings and applications. Advances in Difference Equations, 2021(417), 1–22. 10.1186/s13662-021-03569-5
XVII. Mustafa, Z., & Sims, B. (2009). Fixed point theorems for contractive mappings in complete G-metric spaces. Fixed Point Theory and Applications, 2009, Article 917175. 10.1155/2009/917175
XVIII. Rasham, T., Panda, S. K., Basendwah, G. A., & Hussain, A. (2024). Multivalued nonlinear dominated mappings on a closed ball and associated numerical illustrations with applications to nonlinear integral and fractional operators. Heliyon, 10(7), e34078. 10.1016/j.heliyon.2024.e34078.
XIX. Shoaib, M., Abdeljawad, T., Sarwar, M., & Jarad, F. (2019). Fixed point theorems for multi-valued contractions in b-metric spaces with applications to fractional differential and integral equations. IEEE Access, 7, 127373–127383. 10.1109/ACCESS.2019.2938635
XX. Souayah, N., Mlaiki, N., & Mrad, M. (2018). The GM-contraction principle for mappings on an M-metric spaces endowed with a graph and fixed-point theorems. IEEE Access, 6, 25178–25188. 10.1109/ACCESS.2018.2833147
XXI. Turcanu, T., & Postolache, M. (2024). On a new approach of enriched operators. Heliyon, 10(3), e27890. 10.1016/j.heliyon.2024.e27890

View Download